455 resultados para Structure-fonction
Resumo:
M r=275.8, monoclinic, P21/a, a= 12.356 (5), b=9.054 (4), c= 14.043 (4) A, t= 100.34 (3) ° , V=1545.5A 3, Z=4, D,,,= 1.14, D x = 1.185 Mg m -3, p(Mo Ka, /l = 0.7107 ]k) = 2.77 mm -1, F(000) = 584.0, T= 293 K, R = 0.053 for 1088 reflections. The four-membered ring is buckled 13.0 ° (0= 167.0°). The azetidinium moiety is linked to the C1- ion through a hydrogen bond [O-H...C1 = 3.166 (5) A].
Resumo:
The prefered tautomer(s) of hydroxycyclotriphosphazatrienes and prototropic exchange in solution have been established by 31P n.m.r. spectroscopy, thus confirming predictions deduced from basicity calculations; the X-ray structure of N3P3Ph2(OMe)3OH shows that it exists as the hydrogen-bonded dimer of the oxophosphazadiene tautomer in which a proton is adjacent to the PPh2 group.
Resumo:
A Monte Carlo study along with experimental uptake measurements of 1,2,3-trimethyl benzene, 1,2,4-trimethyl benzene and 1,3,5-trimethyl benzene (TMB) in beta zeolite is reported. The TraPPE potential has been employed for hydrocarbon interaction and harmonic potential of Demontis for modeling framework of the zeolite. Structure, energetics and dynamics of TMB in zeolite beta from Monte Carlo runs reveal interesting information about the diameter, properties of these isomers on confinement. Of the three isomers, 135TMB is supposed to have the largest diameter. It is seen TraPPE with Demontis potential predicts a restricted motion of 135TMB in the channels of zeolite beta.Experimentally, 135TMB has the highest transport diffusivity whereas MID results suggest this has the lowest self diffusivity. (C) 2009 Elsevier Inc. Ail rights reserved.
Resumo:
Shear flows of inelastic spheres in three dimensions in the Volume fraction range 0.4-0.64 are analysed using event-driven simulations.Particle interactions are considered to be due to instantaneous binary collisions, and the collision model has a normal coefficient of restitution e(n) (negative of the ratio of the post- and pre-collisional relative velocities of the particles along the line joining the centres) and a tangential coefficient of restitution e(t) (negative of the ratio of post- and pre-collisional velocities perpendicular to the line Joining the centres). Here, we have considered both e(t) = +1 and e(t) = e(n) (rough particles) and e(t) =-1 (smooth particles), and the normal coefficient of restitution e(n) was varied in the range 0.6-0.98. Care was taken to avoid inelastic collapse and ensure there are no particle overlaps during the simulation. First, we studied the ordering in the system by examining the icosahedral order parameter Q(6) in three dimensions and the planar order parameter q(6) in the plane perpendicular to the gradient direction. It was found that for shear flows of sufficiently large size, the system Continues to be in the random state, with Q(6) and q(6) close to 0, even for volume fractions between phi = 0.5 and phi = 0.6; in contrast, for a system of elastic particles in the absence of shear, the system orders (crystallizes) at phi = 0.49. This indicates that the shear flow prevents ordering in a system of sufficiently large size. In a shear flow of inelastic particles, the strain rate and the temperature are related through the energy balance equation, and all time scales can be non-dimensionalized by the inverse of the strain rate. Therefore, the dynamics of the system are determined only by the volume fraction and the coefficients of restitution. The variation of the collision frequency with volume fraction and coefficient of estitution was examined. It was found, by plotting the inverse of the collision frequency as a function of volume fraction, that the collision frequency at constant strain rate diverges at a volume fraction phi(ad) (volume fraction for arrested dynamics) which is lower than the random close-packing Volume fraction 0.64 in the absence of shear. The volume fraction phi(ad) decreases as the coefficient of restitution is decreased from e(n) = 1; phi(ad) has a minimum of about 0.585 for coefficient of restitution e(n) in the range 0.6-0.8 for rough particles and is slightly larger for smooth particles. It is found that the dissipation rate and all components of the stress diverge proportional to the collision frequency in the close-packing limit. The qualitative behaviour of the increase in the stress and dissipation rate are well Captured by results derived from kinetic theory, but the quantitative agreement is lacking even if the collision frequency obtained from simulations is used to calculate the pair correlation function used In the theory.
Resumo:
The knowledge of diffusion parameters, such as integrated diffusion coefficient and the activation energy for diffusion is important to understand the growth rate of the product phase and the atomic mechanism of diffusion. These parameters are determined in Ti3Au phase with A15 crystal structure. The calculated diffusion parameters will help in validating the theoretical analysis on defect structure of the phase.
Resumo:
The hexahydrate of a 1:1 complex between L-histidyl-L-serine and glycyl-L-glutamic acid crystallizes in space group P1 with a = 4.706(1), b= 8.578(2), c= 16.521(3) ÅA; α= 85.9(1), β= 89.7(1)°, = 77.4(1). The crystal structure, solved by direct methods, has been refined to an R value of 0.046 for 2150 observed reflections. The two peptide molecules in the structure have somewhat extended conformations. The unlike molecules aggregate into separate alternating layers. Each layer is stabilized by hydrogen bonded head-to-tail sequences as well as sequences of hydrogen bonds involving peptide groups. The arrangement of molecules in each layer is similar to one of the plausible idealized arrangements of L-alanyl-L-alanine worked out from simple geometrical considerations. Adjacent layers in the structure are held together by interactions involving side chains as well as water molecules. The water structure observed in the complex provides a good model, at atomic resolution, for that in protein crystals. An interesting feature of the crystal structure is the existence of two water channels in the interfaces between adjacent peptide layers.
Resumo:
The unified structure of steady, one-dimensional shock waves in argon, in the absence of an external electric or magnetic field, is investigated. The analysis is based on a two-temperature, three-fluid continuum approach, using the Navier—Stokes equations as a model and including non-equilibrium collisional as well as radiative ionization phenomena. Quasi charge neutrality and zero velocity slip are assumed. The integral nature of the radiative terms is reduced to analytical forms through suitable spectral and directional approximations. The analysis is based on the method of matched asymptotic expansions. With respect to a suitably chosen small parameter, which is the ratio of atom-atom elastic collisional mean free-path to photon mean free-path, the following shock morphology emerges: within the radiation and electron thermal conduction dominated outer layer occurs an optically transparent discontinuity which consists of a chemically frozen heavy particle (atoms and ions) shock and a collisional ionization relaxation layer. Solutions are obtained for the first order with respect to the small parameter of the problem for two cases: (i) including electron thermal conduction and (ii) neglecting it in the analysis of the outer layer. It has been found that the influence of electron thermal conduction on the shock structure is substantial. Results for various free-stream conditions are presented in the form of tables and figures.
Resumo:
The possibility of hydroxyproline residues stabilizing the collagen triple-helical structure by the formation of additional hydrogen bonds through their γ-hydroxyl group has been studied from structural considerations. It is not possible for this hydroxyl group to form a direct hydrogen bond with a suitable group in a neighbouring chain of the triple-helical protofibril. However, in the modified one-bonded structure, which is stabilized by additional hydrogen bonds being formed through water molecules as intermediaries (put forward in 1968 by Ramachandran, G. N. and Chandrasekharan, R.), it is found that the γ-hydroxyl group of hydroxyproline can form a good hydrogen bond with the water oxygen as acceptor, the hydrogen bond length being 2.82 Å. It is proposed that, in addition to stabilizing the collagen triple-helical structure due to the stereochemical properties of the pyrrolidine ring, hydroxyproline gives added stability by the formation of an extra hydrogen bond. Experimental studies on the determination of shrinkage and denaturation temperatures of native collagen and its synthetic analogues, as a function of their hydroxyproline content, are being undertaken to test this hypothesis.
Resumo:
The Alfvén surface waves propagating along a viscous conducting fluid-vacuum interface have been studied. It is found that besides the "ordinary" Alfvén surface waves, modified by viscosity effects, the interface can support a second mode which is the over-damped solution of the dispersion equation. The possibility of observation of a two-mode structure of Alfvén surface waves in the laboratory and in the solar coronal plasmas is discussed.
Resumo:
New A2+Mo4+O3 oxides for A = Mn, Co and Zn crystallizing in a defect spinel structure have been prepared by hydrogen-reduction of the corresponding AMoO4 oxides. X-ray powder diffraction intensity analysis of the zinc compound indicates that the cation distribution is (Zn)t[Zn1/3Mo4/3□1/3]oO4. The defect spinels are metastable decomposing to a mixture of A2Mo3O8 and AO at high temperatures. Electrical and magnetic properties of the spinel phases are reported.
Resumo:
RECENT crystallographic studies of the dinucleosides ApU (ref. 1) and GpC (ref. 2) have given experimental proof for the base pairing arrangement proposed by Watson and Crick for the DNA double helix3. Another striking feature of this structure relates to the torsional angle about the C5'-C4' bond in the phosphate−sugar backbone chain. In the Crick and Watson model4, this conformation is gauche−trans (GT). Crystal structures of 5'-nucleotides, dinucleosides and dinucleotides so far studied, however, have shown only the gauche−gauche (GG) conformation about this bond. The GG conformer is also the only one found in the refined models of the proposed structure of the double helical nucleic acids and polynucleotides5−7. The only nucleotide with a GT conformation is 6-azauridine-5'-phosphate8 which is not a normal monomer unit of nucleic acids. It is also reported that 5'-dGMP assumes preferentially GT conformation in solution9.
Resumo:
Crystals of C I4HsN40 are monoclinic, space group P21, Unit-cell constants are a = 13.241(4), b = 7.446 (2), c = 6.436 (2)/A, B= 93.23 (2) °. V= 633.5 /A3, Z = 2, Dob s = 1.30 (flotation), Dealt = 1.300 Mg m -3 and #(Cu Ka) = 0.72 mm -1. The structure, solved by direct methods, has been refined to an R value of 3.5% using 1245 intensity measurements. The combined effect of electron-withdrawing and –donating substituents on the geometry of the cyclopropane ring is discussed.
Resumo:
C13HI3N302, orthorhombic, P2~2121, a = 17.443 (5), b = 11.650 (4), c = 5.784 (1)/~, Z = 4, d m = 1.456, d c = 1.429 Mg m -3, F(000) = 512, g(Cu Ka) = 0.843 mm-L The R index is 0.040 for 1358 significant reflections. The structure is stabilized by C-H...O interactions. The N-methylated eis peptide group which forms part of a six-membered ring is non-planar. The torsion angle about the peptide bond is -6.1 (4) ° and the peptide bond length is 1.337 (3) A.