220 resultados para PLASMON RESONANCE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, parallel computers have been attracting attention for simulating artificial neural networks (ANN). This is due to the inherent parallelism in ANN. This work is aimed at studying ways of parallelizing adaptive resonance theory (ART), a popular neural network algorithm. The core computations of ART are separated and different strategies of parallelizing ART are discussed. We present mapping strategies for ART 2-A neural network onto ring and mesh architectures. The required parallel architecture is simulated using a parallel architectural simulator, PROTEUS and parallel programs are written using a superset of C for the algorithms presented. A simulation-based scalability study of the algorithm-architecture match is carried out. The various overheads are identified in order to suggest ways of improving the performance. Our main objective is to find out the performance of the ART2-A network on different parallel architectures. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quinones play a vital role in the process of electron transfer in bacterial photosynthetic reaction centers. It is of interest to investigate the photochemical reactions involving quinones with a view to elucidating the structure-function relationships in the biological processes. Resonance Raman spectra of radical anions and the time-resolved resonance Raman spectra of vitamin K-1 (model compound for Q(A) in Rhodopseudomonas viridis, a bacterial photosynthetic reception center) are presented. The photochemical intermediates of vitamin K-1, viz. radical anion, ketyl radical and o-quinone methide have been identified. The vibrational assignments of all these intermediates are made on the basis of comparison with our earlier TR3 studies on radical anions of naphthoquinone and menaquinone. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Use of dipolar and quadrupolar couplings for quantum information processing (QIP) by nuclear magnetic resonance (NMR) is described. In these cases, instead of the individual spins being qubits, the 2(n) energy levels of the spin-system can be treated as an n-qubit system. It is demonstrated that QIP in such systems can be carried out using transition-selective pulses, in (CHCN)-C-3, (CH3CN)-C-13, Li-7 (I = 3/2) and Cs-133 (I = 7/2), oriented in liquid crystals yielding 2 and 3 qubit systems. Creation of pseudopure states, implementation of logic gates and arithmetic operations (half-adder and subtractor) have been carried out in these systems using transition-selective pulses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

p-Benzoquinone and its halogen substituted derivatives are known to have differing reactivities in the triplet excited state. While bromanil catalyzes the reduction of octaethylporphyrin most efficiently among the halogenated p-benzoquinones, the reaction does not take place in presence of the unsubstituted p-benzoquinone (T. Nakano and Y. Mori, Bull. Chem. Soc. Jpn., 67, 2627 (1994)). Understanding of such differences requires a detailed knowledge of the triplet state structures, normal mode compositions and excited state dynamics. In this paper, we apply a recently presented scheme (M. Puranik, S. Umapathy, J. G. Snijders, and J. Chandrasekhar, J. Chem, Phys., 115, 6106 (2001)) that combines parameters from experiment and computation in a wave packet dynamics simulation to the triplet states of p-benzoquinone and bromanil. The absorption and resonance Raman spectra of both the molecules have been simulated. The normal mode compositions and mode specific excited state displacements have been presented and compared. Time-dependent evolution of the absorption and Raman overlaps for all the observed modes has been discussed in detail. In p-benzoquinone, the initial dynamics is along the C=C stretching and C-H bending modes whereas in bromanil nearly equal displacements are observed along all the stretching coordinates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resonance Raman (RR) spectra are presented for p-nitroazobenzene dissolved in chloroform using 18 excitation Wavelengths, covering the region of (1)(n --> pi*) electronic transition. Raman intensities are observed for various totally symmetric fundamentals, namely, C-C, C-N, N=N, and N-O stretching vibrations, indicating that upon photoexcitation the excited-state evolution occurs along all of these vibrational coordinates. For a few fundamentals, interestingly, in p-nitroazobenzene, it is observed that the RR intensities decrease near the maxima of the resonant electronic (1)(n --> pi*) transition. This is attributed to the interference from preresonant scattering due to the strongly allowed (1)(pi --> pi*) electronic transition. The electronic absorption spectrum and the absolute Raman cross section for the nine Franck-Condon active fundamentals of p-nitroazobenzene have been successfully modeled using Heller's time-dependent formalism for Raman scattering. This employs harmonic description of the lowest energy (1)(n --> pi*) potential energy surface. The short-time isomerization dynamics is then examined from a priori knowledge of the ground-state normal mode descriptions of p-nitroazobenzene to convert the wave packet motion in dimensionless normal coordinates to internal coordinates. It is observed that within 20 fs after photoexcitation in p-nitroazobenzene, the N=N and C-N stretching vibrations undergo significant changes and the unsubstituted phenyl ring and the nitro stretching vibrations are also distorted considerably.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Picosecond time-resolved resonance Raman spectra of the A (intramolecular charge transfer, ICT) state of DMABN, DMABN-d(6) and DMABN-N-15 have been obtained. The isotopic shifts identify the nu (s)(ph-N) mode as a band at 1281 cm(-1). The similar to 96 cm(-1) downshift of this mode from its ground state frequency rules out the electronic coupling PICT model and unequivocally supports the electronic decoupling TICT model. However, our results suggest some pyramidal character of the A state amino conformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thioxanthone has been investigated extensively owing to its unique photochemical and photophysical applications and its solvatochromic behavior. Here, we report the time-resolved resonance Raman studies on the structure of the lowest triplet excited state of thioxanthone in carbon tetrachloride. In addition, FT-IR and FT-Raman techniques have been used to study the vibrational structure in the ground state. To corroborate the experimental findings, density functional theory calculations have been carried out. Isotopic calculations and normal coordinate analysis have been used to help in assigning the observed bands to Raman vibrational modes. Structural information derived from this study is expected to help in better understanding the triplet state photochemistry of thioxanthone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the far-infrared measurements of the electron cyclotron resonance absorption in n-type Si/Si0. 62Ge0.38 and Si0.94Ge0.06 /Si0. 62Ge0.38 modulation- doped heterostructures grown by rapid thermal chemical vapor deposition. The strained Si and Si0.94Ge0.06 channels were grown on relaxed Si0.62Ge0.38 buffer layers, which consist of 0.6 μm uniform Si0.62Ge0.38 layers and 0.5 μm compositionally graded relaxed SiGe layers from 0% Ge to 38 % Ge. The buffer layers were annealed at 800 °C for 1 hr to obtain complete relaxation. The samples had 100 Å spacers and 300 Å 2×1019 cm-3 n-type supply layers on the tops of the 75 Å channels. The far-infrared measurements of electron cyclotron resonance were performed at 4K with the magnetic field of 4 – 8 Tesla. The effective masses determined from the slope of center frequency of absorption peak vs applied magnetic field plot are 0.20 mo and 0.19 mo for the two dimensional electron gases in the Si and Si0.94Ge0.06 channels, respectively. The Si effective mass is very close to that of two dimensional electron gas in Si MOSFET (0.198mo). The electron effective mass of Si0.94Ge0.06 is reported for the first time and about 5 % lower than that of pure Si.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of reaction mechanisms involves systematic investigations of the correlation between structure, reactivity, and time. The challenge is to be able to observe the chemical changes undergone by reactants as they change into products via one or several intermediates such as electronic excited states (singlet and triplet), radicals, radical ions, carbocations, carbanions, carbenes, nitrenes, nitrinium ions, etc. The vast array of intermediates and timescales means there is no single ``do-it-all'' technique. The simultaneous advances in contemporary time-resolved Raman spectroscopic techniques and computational methods have done much towards visualizing molecular fingerprint snapshots of the reactive intermediates in the microsecond to femtosecond time domain. Raman spectroscopy and its sensitive counterpart resonance Raman spectroscopy have been well proven as means for determining molecular structure, chemical bonding, reactivity, and dynamics of short-lived intermediates in solution phase and are advantageous in comparison to commonly used time-resolved absorption and emission spectroscopy. Today time-resolved Raman spectroscopy is a mature technique; its development owes much to the advent of pulsed tunable lasers, highly efficient spectrometers, and high speed, highly sensitive multichannel detectors able to collect a complete spectrum. This review article will provide a brief chronological development of the experimental setup and demonstrate how experimentalists have conquered numerous challenges to obtain background-free (removing fluorescence), intense, and highly spectrally resolved Raman spectra in the nanosecond to microsecond (ns-mu s) and picosecond (ps) time domains and, perhaps surprisingly, laid the foundations for new techniques such as spatially offset Raman spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron paramagnetic resonance studies under ambient conditions of boron‐doped porous silicon show anisotropic Zeeman (g) and hyperfine (A) tensors, signaling localization of the charge carriers due to quantum confinement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ulam’s problem is a two person game in which one of the player tries to search, in minimum queries, a number thought by the other player. Classically the problem scales polynomially with the size of the number. The quantum version of the Ulam’s problem has a query complexity that is independent of the dimension of the search space. The experimental implementation of the quantum Ulam’s problem in a Nuclear Magnetic Resonance Information Processor with 3 quantum bits is reported here.