164 resultados para P-NITROPHENYL PHOSPHATE
Resumo:
p-aminobenzoate could be intercalated into the anionic clay, Ni3Zn2(OH)(8)(OAc)(2)center dot 2H(2)O at a high pH (similar to 10). When the pH was reduced to similar to 7 while washing colloidal dispersion due to delamination was observed. The development of partial positive charge on the amine end of the intercalated anion causes repulsion between the layers leading to delamination and colloidal dispersion of monolayers in water. The layers could be restacked from the colloid to form the parent solid either by increasing the pH or by evaporation.
Resumo:
Alpha-Terpineol (I), a monocyclic monoterpene tertiary alcohol, is widely used in the manufacture of perfumes, cosmetics, soaps and antiseptic agents. It was reported earlier (Horning et al. 1976) that this monoterpene alcohol when administered to humans is hydroxylated to p-menth-l,2,8-triol (II). It is not known whether c~-terpineol also produces other metabolites during its metabolism in the mammalian system and if so, the nature of these metabolites.
Resumo:
The dependence of barrier height on the metal work function of metal-SiO2-p-Si Schottky barrier diodes was investigated and nonlinearity was found. This is explained by the theoretical model proposed recently by Chattopadhyay and Daw. The values of interface trap density and fixed charge density of the insulating layer of the diodes were calculated using this model and found to be appreciably different from those estimated by the usual method.
Resumo:
Inhibitors of heme biosynthesis such as CoCl2, 3-amino-1,2,4-triazole, and thioacetamide block the 3-methylcholanthrene-mediated induction of cytochrome P-450 (c + d) messenger RNAs and their transcription in rat liver. This effect is specific, since the messenger RNA levels for albumin and glutathione transferase (Ya + Yc) and their transcription are not significantly influenced under conditions of heme depletion. Exogenous administration of heme at very low doses (50 μg/100 g body wt) is able to completely counteract the effects of the heme biosynthetic inhibitors on cytochrome P-450 (c + d) messenger RNA levels and their transcription. This constitutes a direct proof for the role of heme as a positive regulator of cytochrome P-450 gene transcription.
Resumo:
Administration of 3-methylcholanthrene (MC) to rats results in a striking increase in the transcription of cytochrome P-450 (c+d) messenger RNA with isolated nuclei, which is blocked by the simultaneous administration of cobalt chloride, an inhibitor of heme biosynthesis. Transcription of cytochrome P-450 (c+d) mRNAs with nuclei isolated from MC treated rats shows a linear increase with time of incubation, whereas it shows a progressive decrease with incubation time in the case of nuclei isolated from MC+CoCl2 treated rats. Addition of heme in vitro (10−6M) to the latter nuclei results in a significant counteraction of the decreased cytochrome P-450 (c+d) mRNA transcription. The inhibition in transcription rates observed in MC+CoCl2 treated rat liver nuclei is more pronounced with the seventh exon probe than with the second exon probe. Once again, in vitro heme addition can counteract the inhibition observed with both the probes. Since run off transcription with isolated nuclei represents essentially elongation of the initiated transcripts, the data obtained can be interpreted on the basis that heme regulates cytochrome P-450 gene transcription elongation.
Resumo:
The initial structural alteration of RNAase A due to acid denaturation (0.5 N HCl, 30 degrees C) that accompanies deamidation (without altering enzymic activity) has been dectected by spectrophotometric titration, fluorescence and ORD/CD measurements. It is shown that acid treated RNAase A has an altered conformation at neutral pH, 25 degrees C. This is characterized by the increased accessibility of buried tyrosine residue(s) towards the solvent. The most altered conformation of RNAase A is found in the 10 h acid-treated derivative. This has about 1.5 additional exposed tyrosine residues and a lesser amount of secondary structure than RNAase A. All three methods (titration, fluorescence and CD) established that the structural transition of RNAase A is biphasic. The first phase occurs within 1 h and the resulting subtle conformational change is constant up to 7 h. Following this, after the release of 0.55 mol of ammonia, the major conformational change begins. The altered conformation of the acid-denatured RNAase A could be reversed completely to the native state through a conformational change induced by substrate analogs like 2'- or 3'-CMP. Thus the monodeamidated derivative isolated from the acid-denatured RNAase A by phosphate is very similar to RNAase A in over-all conformation. The results suggest the possibility of flexibility in the RNAase A molecule that does not affect its catalytic activity, as probed through the tyrosine residues.
Resumo:
The kinetics of the vapor phase oxidation of p-xylene over ferric molybdate catalyst were studied in an isothermal, differential, tubular flow reactor in the temperature range of 360 to 420° C. The major product obtained was p-tolualdehyde with small amounts of maleic anhydride and p-toluic acid. No terephthalic acid or CO2 were observed. The reaction rate data collected fit the redox model given by Equation 1. The values of activation energies Ex, Eo and frequency factors Ax, Ao obtained are 72, 63 kJ/mol and 0.64, 2.89 m3/kg catalyst s respectively. The reaction mechanism was established by studying the oxidation of p-tolualdehyde, toluic and terephthalic acids. It is concluded that the reaction follows a parallel-consecutive scheme. On a étudié la cinétique de l'oxydation, en phase gazeuse, du para-xylène sur un catalyseur consistant en molybdate ferrique; cette oxydation s'est faite dans un réacteur à écoulement tubulaire, isothermique et différentiel, dans une échelle de températures comprises entre 360°C et 420°C. Le produit principal obtenu a été le para-tolualdéhyde; on a aussi trouvé de faibles quantités d'anhydride maléique et d'acide para-toluique, mais on n'a pas noté la présence d'acide téréphtalique ni d'anhydride carbonique (CO2). Les résultats obtenus en ce qui a trait à la vitesse de réaction concordent bien avec les données du modèle redox indiquées par l'équation 1. Les valeurs des énergies d'activation Ex et Eo ainsi que des facteurs de fréquence Ax et Ao obtenus sont respectivement 72 et 63 kilojoules/mol. et 0.64 × 103 et 2.89 m3/kg de catalyseur. On a établi le mécanisme de la réaction en étudiant l'oxydation du para-tolualdéhyde et des acides toluique et téréphtalique. On conclut que la réaction se fait d'une manière parallèle et consécutive.
Resumo:
The suggestion that a rapidly sedimenting rough endoplasmic reticulum fraction in close association with mitochondria, is the preferred site of cytochrome P-450 synthesis has been examined. The rate of cytochrome P-450 synthesis in the different subcellular fractions has been evaluated Image , using the immunoprecipitation technique. The results indicate that the conventional microsomal fraction (100,000 X g sediment) is the major site of cytochrome P-450 synthesis and that the rapidly sedimenting rough endoplasmic reticulum fraction associated with mitochondria is not a preferred site for the hemoprotein synthesis.
Resumo:
Pyrophosphate prototypes such as methyl triphosphate and methyl diphosphate molecules in their different protonation states have been investigated at high levels of quantum chemical calculations. The optimized geometries, the thermochemistry of the hydrolysis and the molecular orbitals contributing to the high energy of these compounds have been analyzed. These investigations provide insights into the ``high energy'' character of ATP molecule. Further, the dependence of vibrational frequencies on the number of phosphate groups and the charged states has also been presented. These results can aid the interpretation of spectra obtained by experiments on complexes containing pyrophosphate prototypes. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The enzymatic pathway for the synthesis of sn-glycerol 3-phosphate was investigated in developing groundnut seeds (Arachis hypogaea). Glycerol-3-phosphate dehydrogenase was not detected in this tissue but an active glycerokinase was demonstrated in the cytosolic fraction. It showed an optimum pH at 8.6 and positive cooperative interactions with both glycerol and ATP. Triosephosphate isomerase and glyceraldehyde-3-phosphate phosphatase were observed mainly in the cytosolic fraction while an active glyceraldehyde reductase was found mainly in the mitochondrial and microsomal fractions. The glyceraldehyde 3-phosphate phosphatase showed specificity and positive cooperativity with respect to glyceraldehyde 3-phosphate. The glyceraldehyde reductase was active toward glucose and fructose but not toward formaldehyde and showed absolute specificity toward NADPH. It is concluded that in the developing groundnut seed, sn-glycerol 3-phosphate is synthesized essentially by the pathway dihydroxyacetone phosphate ? glyceraldehyde 3-phosphate ?Pi glyceraldehyde ?NADPH glycerol ?ATP glycerol 3-phosphate. All the enyzmes of this pathway showed activity profiles commensurate with their participation in triacylglycerol synthesis which is maximal during the period 15�35 days after fertilization. Glycerokinase appears to be the rate-limiting enzyme in this pathway.