445 resultados para NANOCOMPOSITE STRUCTURE
Resumo:
In this paper, we report the synthesis and self assembly of various sizes of ZnO nanocrystals. While the crystal structure and the quantum confinement of nanocrystals were mainly characterized using XRD and UV absorption spectra, the self assembly and long range ordering were studied using scanning tunneling microscopy after spin casting the nanocrystal film on the highly oriented pyrolytic graphite surface. We observe self assembly of these nanocrystals over large areas making them ideal candidates for various potential applications. Further, the electronic structure of the individual dots is obtained from the current-voltage characteristics of the dots using scanning tunneling spectroscopy and compared with the density of states obtained from the tight binding calculations. We observe an excellent agreement with the experimentally obtained local density of states and the theoretically calculated density of states.
Resumo:
Abstract is not available.
Resumo:
A TEM study of the interphase boundary structure of 9R orthorhombic alpha1' martensite formed in beta' Cu---Zn alloys shows that it consists of a single array of dislocations with Burgers vector parallel to left angle bracket110right-pointing angle beta and spaced about 3.5 nm apart. This Burgers vector lies out of the interface plane; hence the interface dislocations are glissile. Unexpectedly, though, the Burgers vectors of these dislocations are not parallel when referenced to the matrix and the martensite lattices. This finding is rationalized on published hard sphere models as a consequence of relaxation of a resultant of the Bain strain and lattice invariant shear displacements within the matrix phase.
Resumo:
Pivaloyl-D-prolyl-L-prolyl-L-analyl-N-methylam~de (I), C1UH32N40c4r,y stallizes in the orthorhombic space group P21212,w ith four molecules in a unit cell of dimensions a = 9.982 (l),b = 10.183 (3), c = 20.746 (2)A . The structure has been refined to R 0.048 for 1 745 observed reflections. All the peptide bonds in the molecule are trans and both the prolyl residues are in the CY-exo-conformation. The molecule assumes a highly folded conformation in which a Type II' DL bend is followed by a Type I LL bend, both stabilised by intramolecular 4 + 1 hydrogen bonds. This conformation, which has been observed for the first time, is of interest in relation to the structure of gramicidin S.
Resumo:
C18H2204, orthorhombic, P212~21, a = 7.343 (4), b = 11.251 (4), c = 19.357 (4)A, Z = 4, Dr, ' = 1.20, D e = 1.254 g cm -3, F(000) = 648, p(Mo Ka) = 0.94 cm -~. X-ray intensity data were collected on a Nonius CAD-4 diffractometer and the structure was solved by direct methods. Full-matrix least-squares refinement gave R = 0.052 (R w = 0.045) for 1053 observed reflections. The stereochemical configuration at C(2) has been shown to be 2-exo-methyl-2-endo- (2,6-dimethoxyphenyl), i.e. (3) in contrast to the structure (2) assigned earlier based on its ~H NMR data.
Resumo:
The 1H and 13C chemical shifts, characteristic vibrational frequencies and force constants for some substituted azolidines are correlated with the results of the CNDO/2 calculations. The influence of the exo and endo heteroatoms on the electronic structure of the heterocyclic ring are discussed.
Resumo:
The infrared spectra of monothiodiacetamide (MTDA, CHaCONHCSCH3) and its N-deuterated compound in solution, solid state and at low temperature are measured. Normal coordinate analysis for the planar vibrations of MTDAd o and -dl have been performed for the two most probable cis-trans-CONHCSor -CSNHCO-conformers using a simple Urey-Bradley force function. The conformation of MTDA derived from the vibrational spectra is supported by the all valence CNDO/2 molecular orbital method. The vibrational assignments and the electronic structure of MTDA are also given.
Resumo:
The crystal structure of 1,3-di benzyl -2 - (4,4-dimet hyl- 2,5- bist hioxocyclo hexylidene) imidazolidine (2) shows a twist of 80.8(5)' about the inter-ring bond, which has a length of 1.482(6) A. The near orthogonality of the donor and acceptor parts of this formal push-pull ethylene makes the structure approach that of a zwitterion, as evidenced by bond lengths indicating strong electron delocalization. The acceptor part approaches a vinylogous dithioate structure, the donor part an amidinium system. The U.V. spectrum shows an n + R and a R + R transition, at 51 1 and 41 7.5 nm, respectively; according to CNDO/S calculations these are located entirely in the [S-C-C-C-SI- part. Two bands at shorter wavelength are ascribed to transitions from combinations of the lone-pair orbitals on the sulphur atoms to a n* orbital in the [N-C-N] + part; this is facilitated by the near perpendicularity of the two parts of the molecule.
Resumo:
The proton NMR spectra of N-methylpyrrole oriented in the nematic phases of liquid crystals with positive and negative diamagnetic anisotropies and their mixtures are reported. Geometrical parameters derived from the spectra at the critical point in the mixture of liquid crystals with positive and negative diamagnetic anisotropies, where macroscopic diamagnetic anisotropy vanishes, are similar to those obtained in the solvent with negative diamagnetic anisotropy. However, significant distortions in the molecular structure attributed to solvent effects have been observed in liquid crystals with positive diamagnetic anisotropy. The minimum energy conformation has one C---H of the methyl perpendicular to the ring.
Resumo:
Conformational energy calculations were carried out on penicillin α-and Β-sulfoxides and δ2- and δ3-cephalosporins, in order to identify the structural features governing their biological activity. Results on penicillin Β-sulfoxide indicated that in its favoured conformation, the orientation of the aminoacyl group was different from the one required for biological activity. Penicillin α sulfoxide, like penicillin sulfide, favoured two conformations of nearly equal energies, but separated by a much higher energy barrier. The reduced activity of the sulfoxides despite the nonplanarity of their lactam peptide indicated that the orientations of the aminoacyl and carboxyl groups might also govern biological activity. δ3-cephalosporins favoured two conformations of nearly equal energies, whereas δ2-cephalosporins favoured only one conformation. The lactam peptide was moderately nonplanÄr in the former, but nearly planar in the latter. The differences in the.preferred orientations of the carboxyl group between penicillins and cephalosporins were correlated with the resistance of cephalosporins to penicillinases.
Resumo:
CIsH20N3Oa+.C1-.H2 O, M r = 395, orthorhombic, Pn21a, a = 7.710 (4), b = 11.455 (3), c -- 21.199 (3)/k, Z = 4, V = 1872.4/k 3, D m = 1.38, D C = 1.403 g cm -3, F(000) = 832, g(Cu Kct) = 20.94 cm -l. Intensities for 1641 reflections were measured on a Nonius CAD-4 diffractometer; of these, 1470 were significant. The structure was solved by direct methods and refined to an R index of 0.045 using a blockdiagonal least-squares procedure. The angle between the least-squares planes through the benzene rings is 125.0 (5) ° and the side chain is folded similarly to one of the independent molecules of imipramine hydrochloride.
Resumo:
M r=275.8, monoclinic, P21/a, a= 12.356 (5), b=9.054 (4), c= 14.043 (4) A, t= 100.34 (3) ° , V=1545.5A 3, Z=4, D,,,= 1.14, D x = 1.185 Mg m -3, p(Mo Ka, /l = 0.7107 ]k) = 2.77 mm -1, F(000) = 584.0, T= 293 K, R = 0.053 for 1088 reflections. The four-membered ring is buckled 13.0 ° (0= 167.0°). The azetidinium moiety is linked to the C1- ion through a hydrogen bond [O-H...C1 = 3.166 (5) A].
Resumo:
The prefered tautomer(s) of hydroxycyclotriphosphazatrienes and prototropic exchange in solution have been established by 31P n.m.r. spectroscopy, thus confirming predictions deduced from basicity calculations; the X-ray structure of N3P3Ph2(OMe)3OH shows that it exists as the hydrogen-bonded dimer of the oxophosphazadiene tautomer in which a proton is adjacent to the PPh2 group.
Resumo:
A Monte Carlo study along with experimental uptake measurements of 1,2,3-trimethyl benzene, 1,2,4-trimethyl benzene and 1,3,5-trimethyl benzene (TMB) in beta zeolite is reported. The TraPPE potential has been employed for hydrocarbon interaction and harmonic potential of Demontis for modeling framework of the zeolite. Structure, energetics and dynamics of TMB in zeolite beta from Monte Carlo runs reveal interesting information about the diameter, properties of these isomers on confinement. Of the three isomers, 135TMB is supposed to have the largest diameter. It is seen TraPPE with Demontis potential predicts a restricted motion of 135TMB in the channels of zeolite beta.Experimentally, 135TMB has the highest transport diffusivity whereas MID results suggest this has the lowest self diffusivity. (C) 2009 Elsevier Inc. Ail rights reserved.
Resumo:
Shear flows of inelastic spheres in three dimensions in the Volume fraction range 0.4-0.64 are analysed using event-driven simulations.Particle interactions are considered to be due to instantaneous binary collisions, and the collision model has a normal coefficient of restitution e(n) (negative of the ratio of the post- and pre-collisional relative velocities of the particles along the line joining the centres) and a tangential coefficient of restitution e(t) (negative of the ratio of post- and pre-collisional velocities perpendicular to the line Joining the centres). Here, we have considered both e(t) = +1 and e(t) = e(n) (rough particles) and e(t) =-1 (smooth particles), and the normal coefficient of restitution e(n) was varied in the range 0.6-0.98. Care was taken to avoid inelastic collapse and ensure there are no particle overlaps during the simulation. First, we studied the ordering in the system by examining the icosahedral order parameter Q(6) in three dimensions and the planar order parameter q(6) in the plane perpendicular to the gradient direction. It was found that for shear flows of sufficiently large size, the system Continues to be in the random state, with Q(6) and q(6) close to 0, even for volume fractions between phi = 0.5 and phi = 0.6; in contrast, for a system of elastic particles in the absence of shear, the system orders (crystallizes) at phi = 0.49. This indicates that the shear flow prevents ordering in a system of sufficiently large size. In a shear flow of inelastic particles, the strain rate and the temperature are related through the energy balance equation, and all time scales can be non-dimensionalized by the inverse of the strain rate. Therefore, the dynamics of the system are determined only by the volume fraction and the coefficients of restitution. The variation of the collision frequency with volume fraction and coefficient of estitution was examined. It was found, by plotting the inverse of the collision frequency as a function of volume fraction, that the collision frequency at constant strain rate diverges at a volume fraction phi(ad) (volume fraction for arrested dynamics) which is lower than the random close-packing Volume fraction 0.64 in the absence of shear. The volume fraction phi(ad) decreases as the coefficient of restitution is decreased from e(n) = 1; phi(ad) has a minimum of about 0.585 for coefficient of restitution e(n) in the range 0.6-0.8 for rough particles and is slightly larger for smooth particles. It is found that the dissipation rate and all components of the stress diverge proportional to the collision frequency in the close-packing limit. The qualitative behaviour of the increase in the stress and dissipation rate are well Captured by results derived from kinetic theory, but the quantitative agreement is lacking even if the collision frequency obtained from simulations is used to calculate the pair correlation function used In the theory.