317 resultados para Infinite
Resumo:
In this paper, we have first given a numerical procedure for the solution of second order non-linear ordinary differential equations of the type y″ = f (x;y, y′) with given initial conditions. The method is based on geometrical interpretation of the equation, which suggests a simple geometrical construction of the integral curve. We then translate this geometrical method to the numerical procedure adaptable to desk calculators and digital computers. We have studied the efficacy of this method with the help of an illustrative example with known exact solution. We have also compared it with Runge-Kutta method. We have then applied this method to a physical problem, namely, the study of the temperature distribution in a semi-infinite solid homogeneous medium for temperature-dependent conductivity coefficient.
Resumo:
A new mathematical model for the solution of the problem of free convection heat transfer between vertical parallel flat isothermal plates under isothermal boundary conditions, has been presented. The set of boundary layer equations used in the model are transformed to nonlinear coupled differential equations by similarity type variables as obtained by Ostrach for vertical flat plates in an infinite fluid medium. By utilising a parameter ηw* to represent the outer boundary, the governing differential equations are solved numerically for parametric values of Pr = 0.733. 2 and 3, and ηw* = 0.1, 0.5, 1, 2, 3, 4, ... and 8.0. The velocity and temperature profiles are presented. Results indicate that ηw* can effectively classify the system into (1) thin layers where conduction predominates, (2) intermediate layers and (3) thick layers whose results can be predicted by the solutions for vertical flat plates in infinite fluid medium. Heat transfer correlations are presented for the 3 categories. Several experimental and analytical results available in the literature agree with the present correlations.
Resumo:
The flow of an incompressible non-Newtonian viscous fluid contained between two torsionally oscillating infinite parallel discs is investigated. The two specific cases studied are (i) one disc only oscillates while the other is at rest and (ii) both discs oscillate with the same frequency and amplitude but in opposite directions. Assuming that the amplitude of oscillation,Ω/n, is small and neglecting the squares and higher powers ofΩ/n, the equations of motion have been solved exactly for velocity and pressure satisfying all the boundary conditions. The effect of both positive and negative coefficients of cross-viscosity on the steady components of the flow has been represented graphically.
Resumo:
The laminar boundary layer over a stationary infinite disk induced by a rotating compressible fluid is considered. The free stream velocity has been taken as tangential and varies as a power of radius, i.e. v∞ ˜ r−n. The effect of the axial magnetic field and suction is also included in the analysis. An implicit finite difference scheme is employed to the governing similarity equations for numerical computations. Solutions are studied for various values of disk to fluid temperature ratio and for values of n between 1 and −1. In the absence of the magnetic field and suction, velocity profiles exhibit oscillations. It has been observed that for a hot disk in the presence of a magnetic field the boundary layer solutions decay algebraically instead of decaying exponentially. In the absence of the magnetic field and suction, the solution of the similarity equations exists only for a certain range of n.
Resumo:
This paper presents a study of kinematic and force singularities in parallel manipulators and closed-loop mechanisms and their relationship to accessibility and controllability of such manipulators and closed-loop mechanisms, Parallel manipulators and closed-loop mechanisms are classified according to their degrees of freedom, number of output Cartesian variables used to describe their motion and the number of actuated joint inputs. The singularities in the workspace are obtained by considering the force transformation matrix which maps the forces and torques in joint space to output forces and torques ill Cartesian space. The regions in the workspace which violate the small time local controllability (STLC) and small time local accessibility (STLA) condition are obtained by deriving the equations of motion in terms of Cartesian variables and by using techniques from Lie algebra.We show that for fully actuated manipulators when the number ofactuated joint inputs is equal to the number of output Cartesian variables, and the force transformation matrix loses rank, the parallel manipulator does not meet the STLC requirement. For the case where the number of joint inputs is less than the number of output Cartesian variables, if the constraint forces and torques (represented by the Lagrange multipliers) become infinite, the force transformation matrix loses rank. Finally, we show that the singular and non-STLC regions in the workspace of a parallel manipulator and closed-loop mechanism can be reduced by adding redundant joint actuators and links. The results are illustrated with the help of numerical examples where we plot the singular and non-STLC/non-STLA regions of parallel manipulators and closed-loop mechanisms belonging to the above mentioned classes. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The unsteady laminar free convection boundary layer flows around two-dimensional and axisymmetric bodies placed in an ambient fluid of infinite extent have been studied when the flow is driven by thermal buoyancy forces and buoyancy forces from species diffusion. The unsteadiness in the flow field is caused by both temperature and concentration at the wall which vary arbitrarily with time. The coupled nonlinear partial differential equations with three independent variables governing the flow have been solved numerically using an implicit finite-difference scheme in combination with the quasilinearization technique. Computations have been performed for a circular cylinder and a sphere. The skin friction, heat transfer and mass transfer are strongly dependent on the variation of the wall temperature and concentration with time. Also the skin friction and heat transfer increase or decrease as the buoyancy forces from species diffusion assist and oppose, respectively, the thermal buoyancy force, whereas the mass transfer rate is higher for small values of the ratio of the buoyancy parameters than for large values. The local heat and mass transfer rates are maximum at the stagnation point and they decrease progressively with increase of the angular position from the stagnation point.
Resumo:
An approximate dynamic programming (ADP) based neurocontroller is developed for a heat transfer application. Heat transfer problem for a fin in a car's electronic module is modeled as a nonlinear distributed parameter (infinite-dimensional) system by taking into account heat loss and generation due to conduction, convection and radiation. A low-order, finite-dimensional lumped parameter model for this problem is obtained by using Galerkin projection and basis functions designed through the 'Proper Orthogonal Decomposition' technique (POD) and the 'snap-shot' solutions. A suboptimal neurocontroller is obtained with a single-network-adaptive-critic (SNAC). Further contribution of this paper is to develop an online robust controller to account for unmodeled dynamics and parametric uncertainties. A weight update rule is presented that guarantees boundedness of the weights and eliminates the need for persistence of excitation (PE) condition to be satisfied. Since, the ADP and neural network based controllers are of fairly general structure, they appear to have the potential to be controller synthesis tools for nonlinear distributed parameter systems especially where it is difficult to obtain an accurate model.
Resumo:
A computational scheme has been developed for strongly interacting systems wherein the intermolecular interaction is introduced as a charge-induced-dipole term. Within this approximation, the model Hamiltonian is exactly solved using a valence-bond basis. The validity of the scheme has been checked by use of exact calculations on small model systems. The method has been applied to finite polyenes to study the shifts in the ground-state energies and dipole-allowed excited-state energies in the presence of neighbors. Our calculations show a red shift in the optical gap of the infinite polyene by 0.124 eV, which is rather small compared to the experimental red shift. This is traced to the larger inaccuracy in the calculated shift in the excited state. The calculated shift in the ground-state energies are more accurate and hence the method is better suited for studying the effect of intermolecular interactions on the properties of the ground state.
Resumo:
We study a model of fermions hopping on a chain with a weak incommensuration close to dimerization; both q, the deviation of the wave number from pi, and delta, the strength of the incommensuration, are assumed to be small. For free fermions, we show that there are an infinite number of energy bands which meet at zero energy as q approaches zero. The number of states lying inside the q = 0 gap remains nonzero as q/delta --> 0. Thus the limit q --> 0 differs from q = 0, as can be seen clearly in the low-temperature specific heat. For interacting fermions or the XXZ spin-(1/2) chain, we use bosonization to argue that similar results hold. Finally, our results can be applied to the Azbel-Hofstadter problem of particles hopping on a two-dimensional lattice in the presence of a magnetic field.
Resumo:
Motivated by certain situations in manufacturing systems and communication networks, we look into the problem of maximizing the profit in a queueing system with linear reward and cost structure and having a choice of selecting the streams of Poisson arrivals according to an independent Markov chain. We view the system as a MMPP/GI/1 queue and seek to maximize the profits by optimally choosing the stationary probabilities of the modulating Markov chain. We consider two formulations of the optimization problem. The first one (which we call the PUT problem) seeks to maximize the profit per unit time whereas the second one considers the maximization of the profit per accepted customer (the PAC problem). In each of these formulations, we explore three separate problems. In the first one, the constraints come from bounding the utilization of an infinite capacity server; in the second one the constraints arise from bounding the mean queue length of the same queue; and in the third one the finite capacity of the buffer reflect as a set of constraints. In the problems bounding the utilization factor of the queue, the solutions are given by essentially linear programs, while the problems with mean queue length constraints are linear programs if the service is exponentially distributed. The problems modeling the finite capacity queue are non-convex programs for which global maxima can be found. There is a rich relationship between the solutions of the PUT and PAC problems. In particular, the PUT solutions always make the server work at a utilization factor that is no less than that of the PAC solutions.
Resumo:
A stronger concept of complete (exact) controllability which we call Trajectory Controllability is introduced in this paper. We study the Trajectory Controllability of an abstract nonlinear integro-differential system in the finite and infinite dimensional space setting. (C) 2010 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
Resumo:
We consider the slotted ALOHA protocol on a channel with a capture effect. There are M
Resumo:
This paper describes a predictive model for breakout noise from an elliptical duct or shell of finite length. The transmission mechanism is essentially that of ``mode coupling'', whereby higher structural modes in the duct walls get excited because of non-circularity of the wall. Effect of geometry has been taken care of by evaluating Fourier coefficients of the radius of curvature. The noise radiated from the duct walls is represented by that from a finite vibrating length of a semi infinite cylinder in a free field. Emphasis is on understanding the physics of the problem as well as analytical modeling. The analytical model is validated with 3-D FEM. Effects of the ovality, curvature, and axial terminations of the duct have been demonstrated. (C) 2010 Institute of Noise Control Engineering.
Resumo:
Perfectly hard particles are those which experience an infinite repulsive force when they overlap, and no force when they do not overlap. In the hard-particle model, the only static state is the isostatic state where the forces between particles are statically determinate. In the flowing state, the interactions between particles are instantaneous because the time of contact approaches zero in the limit of infinite particle stiffness. Here, we discuss the development of a hard particle model for a realistic granular flow down an inclined plane, and examine its utility for predicting the salient features both qualitatively and quantitatively. We first discuss Discrete Element simulations, that even very dense flows of sand or glass beads with volume fraction between 0.5 and 0.58 are in the rapid flow regime, due to the very high particle stiffness. An important length scale in the shear flow of inelastic particles is the `conduction length' delta = (d/(1 - e(2))(1/2)), where d is the particle diameter and e is the coefficient of restitution. When the macroscopic scale h (height of the flowing layer) is larger than the conduction length, the rates of shear production and inelastic dissipation are nearly equal in the bulk of the flow, while the rate of conduction of energy is O((delta/h)(2)) smaller than the rate of dissipation of energy. Energy conduction is important in boundary layers of thickness delta at the top and bottom. The flow in the boundary layer at the top and bottom is examined using asymptotic analysis. We derive an exact relationship showing that the a boundary layer solution exists only if the volume fraction in the bulk decreases as the angle of inclination is increased. In the opposite case, where the volume fraction increases as the angle of inclination is increased, there is no boundary layer solution. The boundary layer theory also provides us with a way of understanding the cessation of flow when at a given angle of inclination when the height of the layer is decreased below a value h(stop), which is a function of the angle of inclination. There is dissipation of energy due to particle collisions in the flow as well as due to particle collisions with the base, and the fraction of energy dissipation in the base increases as the thickness decreases. When the shear production in the flow cannot compensate for the additional energy drawn out of the flow due to the wall collisions, the temperature decreases to zero and the flow stops. Scaling relations can be derived for h(stop) as a function of angle of inclination.
Resumo:
This paper proposes a Single Network Adaptive Critic (SNAC) based Power System Stabilizer (PSS) for enhancing the small-signal stability of power systems over a wide range of operating conditions. SNAC uses only a single critic neural network instead of the action-critic dual network architecture of typical adaptive critic designs. SNAC eliminates the iterative training loops between the action and critic networks and greatly simplifies the training procedure. The performance of the proposed PSS has been tested on a Single Machine Infinite Bus test system for various system and loading conditions. The proposed stabilizer, which is relatively easier to synthesize, consistently outperformed stabilizers based on conventional lead-lag and linear quadratic regulator designs.