162 resultados para Code-switching


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insulated gate bipolar transistors (IGBTs) are used in high-power voltage-source converters rated up to hundreds of kilowatts or even a few megawatts. Knowledge of device switching characteristics is required for reliable design and operation of the converters. Switching characteristics are studied widely at high current levels, and corresponding data are available in datasheets. But the devices in a converter also switch low currents close to the zero crossings of the line currents. Further, the switching behaviour under these conditions could significantly influence the output waveform quality including zero crossover distortion. Hence, the switching characteristics of high-current IGBTs (300-A and 75-A IGBT modules) at low load current magnitudes are investigated experimentally in this paper. The collector current, gate-emitter voltage and collector-emitter voltage are measured at various low values of current (less than 10% of the device rated current). A specially designed in-house constructed coaxial current transformer (CCT) is used for device current measurement without increasing the loop inductance in the power circuit. Experimental results show that the device voltage rise time increases significantly during turn-off transitions at low currents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Usually the top and bottom IGBT devices in an inverter leg are of the same make (i.e. from same manufacturer). At low power level, these two devices even may be contained in the same module. However at high power levels the top and bottom devices are in separate modules. Sometimes, in the event of device failure, device of particular make may be replaced by one of another make, but of same ratings (on account of non-availability of the original make). This paper investigates the effect of such intermixing of two different makes of high power IGBTs in an inverter leg on the switching characteristics. The switching transitions between IGBT and diode of similar make and those of IGBT and diode of dissimilar make are compared experimentally at various DC link voltages and currents. The comparisons are made in terms of, IGBT peak turn-on di/dt, IGBT peak turn-off di/dt, peak diode reverse recovery current (I-rr), peak IGBT voltage overshoot and switching energy losses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Lattice-Boltzmann method (LBM), a promising new particle-based simulation technique for complex and multiscale fluid flows, has seen tremendous adoption in recent years in computational fluid dynamics. Even with a state-of-the-art LBM solver such as Palabos, a user has to still manually write the program using library-supplied primitives. We propose an automated code generator for a class of LBM computations with the objective to achieve high performance on modern architectures. Few studies have looked at time tiling for LBM codes. We exploit a key similarity between stencils and LBM to enable polyhedral optimizations and in turn time tiling for LBM. We also characterize the performance of LBM with the Roofline performance model. Experimental results for standard LBM simulations like Lid Driven Cavity, Flow Past Cylinder, and Poiseuille Flow show that our scheme consistently outperforms Palabos-on average by up to 3x while running on 16 cores of an Intel Xeon (Sandybridge). We also obtain an improvement of 2.47x on the SPEC LBM benchmark.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lattice strain and domain switching behavior of xBiScO(3)-(1-x) PbTiO3 (x = 0.40) was investigated as a function of cyclic field and grain orientation by in situ X-ray diffraction during application of electric fields. The electric field induced 200 lattice strain was measured to be five times larger than the 111 lattice strain in pseudorhombohedral xBiScO(3)-(1-x) PbTiO3 (x = 0.40). It is shown that the anomalous 200 lattice strain is not an intrinsic phenomenon, but arises primarily due to stress associated with the reorientation of the 111 domains in dense polycrystalline ceramic. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In structured output learning, obtaining labeled data for real-world applications is usually costly, while unlabeled examples are available in abundance. Semisupervised structured classification deals with a small number of labeled examples and a large number of unlabeled structured data. In this work, we consider semisupervised structural support vector machines with domain constraints. The optimization problem, which in general is not convex, contains the loss terms associated with the labeled and unlabeled examples, along with the domain constraints. We propose a simple optimization approach that alternates between solving a supervised learning problem and a constraint matching problem. Solving the constraint matching problem is difficult for structured prediction, and we propose an efficient and effective label switching method to solve it. The alternating optimization is carried out within a deterministic annealing framework, which helps in effective constraint matching and avoiding poor local minima, which are not very useful. The algorithm is simple and easy to implement. Further, it is suitable for any structured output learning problem where exact inference is available. Experiments on benchmark sequence labeling data sets and a natural language parsing data set show that the proposed approach, though simple, achieves comparable generalization performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, using the intrinsically disordered oncoprotein Myc as an example, we present a mathematical model to help explain how protein oscillatory dynamics can influence state switching. Earlier studies have demonstrated that, while Myc overexpression can facilitate state switching and transform a normal cell into a cancer phenotype, its downregulation can reverse state-switching. A fundamental aspect of the model is that a Myc threshold determines cell fate in cells expressing p53. We demonstrate that a non-cooperative positive feedback loop coupled with Myc sequestration at multiple binding sites can generate bistable Myc levels. Normal quiescent cells with Myc levels below the threshold can respond to mitogenic signals to activate the cyclin/cdk oscillator for limited cell divisions but the p53/Mdm2 oscillator remains nonfunctional. In response to stress, the p53/Mdm2 oscillator is activated in pulses that are critical to DNA repair. But if stress causes Myc levels to cross the threshold, Myc inactivates the p53/Mdm2 oscillator, abrogates p53 pulses, and pushes the cyclin/cdk oscillator into overdrive sustaining unchecked proliferation seen in cancer. However, if Myc is downregulated, the cyclin/cdk oscillator is inactivated and the p53/Mdm2 oscillator is reset and the cancer phenotype is reversed. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement of device current during switching characterisation of an insulated gate bipolar transistor (IGBT) requires a current sensor with low insertion impedance and high bandwidth. This study presents an experimental procedure for evaluating the performance of a coaxial current transformer (CCT), designed for the above purpose. A prototype CCT, which can be mounted directly on a power terminal of a 1200 V/50 A half-bridge IGBT module, is characterised experimentally. The measured characteristics include insertion impedance, gain and phase of the CCT at different frequencies. The bounds of linearity within which the CCT can operate without saturation are determined theoretically, and are also verified experimentally. The experimental study on linearity of the CCT requires a high-amplitude current source. A proportional-resonant (PR) controller-based current-controlled half-bridge inverter is developed for this purpose. A systematic procedure for selection of PR controller parameters is also reported in this study. This set-up is helpful to determine the limit of linearity and also to measure the frequency response of the CCT at realistic amplitudes of current in the low-frequency range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of different thicknesses in the range of 200-720 nm have been deposited on glass substrates at room temperature using thermal evaporation technique. The structural investigations revealed that the as-deposited films are amorphous in nature. The surface roughness of the films shows an increasing trend at higher thickness of the films. The surface roughness of the films shows an increasing trend at higher thickness of the films. Interference fringes in the transmission spectra of these films suggest that the films are fairly smooth and uniform. The optical absorption in Sb2Se3 film is described using indirect transition and the variation in band gaps is explained on the basis of defects and disorders in the chalcogenide systems. Raman spectrum confirms the increase of orderliness with film thickness. From the I-V characteristics, a memory type switching is observed whose threshold voltage increases with film thickness. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have addressed the microscopic transport mechanism at the switching or `on-off' transition in transition metal dichalcogenide (TMDC) field-effect transistors (FETs), which has been a controversial topic in TMDC electronics, especially at room temperature. With simultaneous measurement of channel conductivity and its slow time-dependent fluctuation (or noise) in ultrathin WSe2 and MoS2 FETs on insulating SiO2 substrates where noise arises from McWhorter-type carrier number fluctuations, we establish that the switching in conventional backgated TMDC FETs is a classical percolation transition in a medium of inhomogeneous carrier density distribution. From the experimentally observed exponents in the scaling of noise magnitude with conductivity, we observe unambiguous signatures of percolation in a random resistor network, particularly, in WSe2 FETs close to switching, which crosses over to continuum percolation at a higher doping level. We demonstrate a powerful experimental probe to the microscopic nature of near-threshold electrical transport in TMDC FETs, irrespective of the material detail, device geometry, or carrier mobility, which can be extended to other classes of 2D material-based devices as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low-order harmonic pulsating torque is a major concern in high-power drives, high-speed drives, and motor drives operating in an overmodulation region. This paper attempts to minimize the low-order harmonic torques in induction motor drives, operated at a low pulse number (i.e., a low ratio of switching frequency to fundamental frequency), through a frequency domain (FD) approach as well as a synchronous reference frame (SRF) based approach. This paper first investigates FD-based approximate elimination of harmonic torque as suggested by classical works. This is then extended into a procedure for minimization of low-order pulsating torque components in the FD, which is independent of machine parameters and mechanical load. Furthermore, an SRF-based optimal pulse width modulation (PWM) method is proposed to minimize the low-order harmonic torques, considering the motor parameters and load torque. The two optimal methods are evaluated and compared with sine-triangle (ST) PWM and selective harmonic elimination (SHE) PWM through simulations and experimental studies on a 3.7-kW induction motor drive. The SRF-based optimal PWM results in marginally better performance than the FD-based one. However, the selection of optimal switching angle for any modulation index (M) takes much longer in case of SRF than in case of the FD-based approach. The FD-based optimal solutions can be used as good starting solutions and/or to reasonably restrict the search space for optimal solutions in the SRF-based approach. Both of the FD-based and SRF-based optimal PWM methods reduce the low-order pulsating torque significantly, compared to ST PWM and SHE PWM, as shown by the simulation and experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solvent plays a decisive role in the photochemistry and photophysics of aromatic ketones. Xanthone (XT) is one such aromatic ketone and its triplet-triplet (T-T) absorption spectra show intriguing solvatochromic behavior. Also, the reactivity of XT towards H-atom abstraction shows an unprecedented decrease in protic solvents relative to aprotic solvents. Therefore, a comprehensive solvatochromic analysis of the triplet-triplet absorption spectra of XT was carried out in conjunction with time dependent density functional theory using the ad hoc explicit solvent model approach. A detailed solvatochromic analysis of the T-T absorption bands of XT suggests that the hydrogen bonding interactions are different in the corresponding triplet excited states. Furthermore, the contributions of non-specific and hydrogen bonding interactions towards differential solvation of the triplet states in protic solvents were found to be of equal magnitude. The frontier molecular orbital and electron density difference analysis of the T-1 and T-2 states of XT indicates that the charge redistribution in these states leads to intermolecular hydrogen bond strengthening and weakening, respectively, relative to the S-0 state. This is further supported by the vertical excitation energy calculations of the XT-methanol supra-molecular complex. The intermolecular hydrogen bonding potential energy curves obtained for this complex in the S-0, T-1, and T-2 states support the model. In summary, we propose that the different hydrogen bonding mechanisms exhibited by the two lowest triplet excited states of XT result in a decreasing role of the n pi* triplet state, and are thus responsible for its reduced reactivity towards H-atom abstraction in protic solvents. (C) 2016 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vanadium Oxide has been a frontrunner in the field of oxide electronics because of its metal-insulator transition (MIT). The interplay of different structures of VO2 has played a crucial role in deciding the magnitude of the first order MIT. Substitution doping has been found to introduce different polymorphs of VO2. Hence the role of substitution doping in stabilizing the competing phases of VO2 in the thin film form remains underexplored. Consequently there have been reports both discounting and approving such a stabilization of competing phases in VO2. It is reported in the literature that the bandwidth of the hysteresis and transition temperature of VO2 can be tuned by substitutional doping of VO2 with W. In this work, we have adopted a novel technique called, Ultrasonic Nebulized Spray Pyrolysis of Aqueous Combustion Mixture (UNSPACM) to deposit VO2 and W- doped VO2 as thin films. XRD and Raman spectroscopy were used to investigate the role of tungsten on the structure of VO2 thin films. Morphology of the thin films was found to be consisting of globular and porous nanoparticles of size similar to 20nm. Transition temperature decreased with the addition of W. We found that for 2.0 at % W doping in VO2, the transition temperature has reduced from 68 degrees C to 25 degrees C. It is noted that W-doping in the process of reducing the transition temperature, alters the local structure and also increases room temperature carrier concentration. (c) 2016 Author(s).