165 resultados para zinc oxide films
Resumo:
In this paper, we have carried out thin film characterization of poly(3,4-propylenedioxythiophene)-sultone (PProDOT-S), a derivative of electrochromic poly(3,4-propylenedioxythiophene) (PProDOT). PProDOT-S was deposited onto transparent conducting oxide coated glass substrates by solution casting method. Single wavelength spectrophotometry is used to monitor the switching speed and contrast ratio at maximum wavelength (lambda (max)). The percentage transmittance at the lambda (max) of the neutral polymer is monitored as a function of time when the polymer film is repeatedly switched. This experiment gives a quantitative measure of the speed with which a film is able to switch between the two states i.e. the coloured and the bleached states. PProDOT-S films were switched at a voltage of 1 center dot 9 V with a switching speed of 2 s at lambda (max) of 565 nm and showed a contrast of similar to 37%. Cyclic voltammetry performed at different scan rates have shown the characteristic anodic and cathodic peaks. The structural investigations of PProDOT-S films by IR spectra were in good agreement with previously reported results. Raman spectra of PProDOT-S showed a strong Raman peak at 1509 cm (-aEuro parts per thousand 1) and a weak peak at 1410 cm (-aEuro parts per thousand 1) due to the C = C asymmetric and symmetric stretching vibrations of thiophene rings. The morphological investigations carried out by using scanning electron microscope (SEM) of polymer films have shown that these polymers are found to be arranged in dense packed clusters with non-uniform distribution having an average width and length of 95 nm and 160 nm, respectively.
Resumo:
In 2003, Babin et al. theoretically predicted (J. Appl. Phys. 94:4244, 2003) that fabrication of organic-inorganic hybrid materials would probably be required to implement structures with multiple photonic band gaps. In tune with their prediction, we report synthesis of such an inorganic-organic nanocomposite, comprising Cu4O3-CuO-C thin films that experimentally exhibit the highest (of any known material) number (as many as eleven) of photonic band gaps in the near infrared. On contrary to the report by Wang et al. (Appl. Phys. Lett. 84:1629, 2004) that photonic crystals with multiple stop gaps require highly correlated structural arrangement such as multilayers of variable thicknesses, we demonstrate experimental realization of multiple stop gaps in completely randomized structures comprising inorganic oxide nanocrystals (Cu4O3 and CuO) randomly embedded in a randomly porous carbonaceous matrix. We report one step synthesis of such nanostructured films through the metalorganic chemical vapor deposition technique using a single source metalorganic precursor, Cu-4(deaH)(dea)(oAc)(5) a <...aEuro parts per thousand(CH3)(2)CO. The films displaying multiple (4/9/11) photonic band gaps with equal transmission losses in the infrared are promising materials to find applications as multiple channel photonic band gap based filter for WDM technology.
Resumo:
Understanding and controlling growth stress is a requisite for integrating oxides with Si. Yttria stabilized zirconia (YSZ) is both an important functional oxide and a buffer layer material needed for integrating other functional oxides. Stress evolution during the growth of (100) and (111) oriented YSZ on Si (100) by radio frequency and reactive direct current sputtering has been investigated with an in-situ monitor and correlated with texture evolution. Films nucleated at rates <5 nm/min are found to be (111) oriented and grow predominantly under a compressive steady state stress. Films nucleated at rates >20 nm/min are found to be (100) oriented and grow under tension. A change in growth rate following the nucleation stage does not change the orientation. The value of the final steady state stress varies from -4.7 GPa to 0.3 GPa. The in-situ studies show that the steady state stress generation is a dynamic phenomenon occurring at the growth surface and not decided at film nucleation. The combination of stress evolution and texture evolution data shows that the adatom injection into the grain boundaries is the predominant source of compressive stress and grain boundary formation at the growth surface is the source of tensile stress. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4757924]
Resumo:
In recent years, there has been significant effort in the synthesis of nanocrystalline spinel ferrites due to their unique properties. Among them, zinc ferrite has been widely investigated for countless applications. As traditional ferrite synthesis methods are energy- and time-intensive, there is need for a resource-effective process that can prepare ferrites quickly and efficiently without compromising material quality. We report on a novel microwave-assisted soft-chemical synthesis technique in the liquid medium for synthesis of ZnFe2O4 powder below 100 °C, within 5 min. The use of β-diketonate precursors, featuring direct metal-to-oxygen bonds in their molecular structure, not only reduces process temperature and duration sharply, but also leads to water-soluble and non-toxic by-products. As synthesized powder is annealed at 300 °C for 2 hrs in a conventional anneal (CA) schedule. An alternative procedure, a 2-min rapid anneal at 300 °C (RA) is shown to be sufficient to crystallize the ferrite particles, which show a saturation magnetization (MS) of 38 emu/g, compared with 39 emu/g for a 2-hr CA. This signifies that our process is efficient enough to reduce energy consumption by ∼85% just by altering the anneal scheme. Recognizing the criticality of anneal process to the energy budget, a more energy-efficient variation of the reaction process was developed, which obviates the need for post-synthesis annealing altogether. It is shown that the process also can be employed to deposit crystalline thin films of ferrites.
Resumo:
Metal-oxide semiconductor capacitors based on titanium dioxide (TiO2) gate dielectrics were prepared by RF magnetron sputtering technique. The deposited films were post-annealed at temperatures in the range 773-1173 K in air for 1 hour. The effect of annealing temperature on the structural properties of TiO2 films was investigated by X-ray diffraction and Raman spectroscopy, the surface morphology was studied by atomic force microscopy (AFM) and the electrical properties of Al/TiO2/p-Si structure were measured recording capacitance-voltage and current-voltage characteristics. The as-deposited films and the films annealed at temperatures lower than 773 K formed in the anatase phase, while those annealed at temperatures higher than 973 K were made of mixtures of the rutile and anatase phases. FTIR analysis revealed that, in the case of films annealed at 1173 K, an interfacial layer had formed, thereby reducing the dielectric constant. The dielectric constant of the as-deposited films was 14 and increased from 25 to 50 with increases in the annealing temperature from 773 to 973 K. The leakage current density of as-deposited films was 1.7 x 10(-5) and decreased from 4.7 X 10(-6) to 3.5 x 10(-9) A/cm(2) with increases in the annealing temperature from 773 to 1173 K. The electrical conduction in the Al/TiO2/p-Si structures was studied on the basis of the plots of Schottky emission, Poole-Frenkel emission and Fowler-Nordheim tunnelling. The effect of structural changes on the current-voltage and capacitance-voltage characteristics of Al/TiO2/p-Si capacitors was also discussed.
Resumo:
Pure and cadmium doped tin oxide thin films were deposited on glass substrates from aqueous solution of cadmium acetate, tin (IV) chloride and sodium hydroxide by the nebulizer spray pyrolysis (NSP) technique. X-ray diffraction reveals that all films have tetragonal crystalline structure with preferential orientation along (200) plane. On application of the Scherrer formula, it is found that the maximum size of grains is 67 nm. Scanning electron microscopy shows that the grains are of rod and spherical in shape. Energy dispersive X-ray analysis reveals the average ratio of the atomic percentage of pure and Cd doped SnO2 films. The electrical resistivity is found to be 10(2) Omega cm at higher temperature (170 degrees C) and 10(3) Omega cm at lower temperature (30 degrees C). Optical band gap energy was determined from transmittance and absorbance data obtained from UV-vis spectra. Optical studies reveal that the band gap energy decreases from 3.90 eV to 3.52 eV due to the addition of Cd as dopant with different concentrations.
Resumo:
Thin films of NiTi were deposited by DC magnetron sputtering from an equiatomic alloy target (Ni/Ti: 50/50 at.%). The films were deposited without intentional heating of the substrates. The thickness of the deposited films was approximately 2 mu m. The structure and morphology of NiTi films annealed at different temperatures were analyzed in order to understand the effect of annealing on physical properties of the films. The compositional investigations of fresh and annealed films were also evaluated by energy dispersive X-ray spectroscopy (EDS) and X-ray photo-electron spectroscopy (XPS) techniques. X-ray diffraction (XRD) studies showed that as-deposited films were amorphous in nature whereas annealed films were found to poly-crystalline with the presence of Austenite phase as the dominant phase. AFM investigations showed higher grain size and surface roughness values in the annealed films. In annealed films, the grain size and film roughness values were increased from 10 to 85 nm and 2-18 nm. Film composition measured by EDS were found to 52.5 atomic percent of Ni and 47.5 atomic percent of Ti. XPS investigations, demonstrated the presence of Ni content on the surface of the films, in fresh films, whereas annealed films did not show any nickel. From HR-XPS investigations, it can be concluded that annealed NiTi films have higher tendency to form metal oxide (titanium dioxide) layer on the surface of the films than fresh NiTi films. (C) 2013 Elsevier B. V. All rights reserved.
Resumo:
Development towards the combination of miniaturization and improved functionality of RFIC has been stalled due to the lack of high-performance integrated inductors. To meet this challenge, integration of magnetic material with high permeability as well as low conductivity is a must. Ferrite films are excellent candidates for RF devices due to their low cost, high resistivity, and low eddy current losses. Unlike its bulk counterpart, nanocrystalline zinc ferrite, because of partial inversion in the spinel structure, exhibits novel magnetic properties suitable for RF applications. However, most scalable ferrite film deposition processes require either high temperature or expensive equipment or both. We report a novel low temperature (< 200 degrees C) solution-based deposition process for obtaining high quality, polycrystalline zinc ferrite thin films (ZFTF) on Si (100) and on CMOS-foundry-fabricated spiral inductor structures, rapidly, using safe solvents and precursors. An enhancement of up to 20% at 5 GHz in the inductance of a fabricated device was achieved due to the deposited ZFTF. Substantial inductance enhancement requires sufficiently thick films and our reported process is capable of depositing smooth, uniform films as thick as similar to 20 mu m just by altering the solution composition. The method is capable of depositing film conformally on a surface with complex geometry. As it requires neither a vacuum system nor any post-deposition processing, the method reported here has a low thermal budget, making it compatible with modern CMOS process flow.
Resumo:
Yttrium oxide (Y203) thin films have been deposited by radio frequency plasma assisted metal organic chemical vapor deposition (MOCVD) process using (2,2,6,6-tetramethy1-3,5-heptanedionate) yttrium (commonly known as Y(thd)3) precursor in a plasma of argon and oxygen gases at a substrate temperature of 350 C. The films have been deposited under influence of varying RF self-bias (-50 V to 175 V) on silicon, quartz, stainless steel and tantalum substrates. The deposited coatings are characterized by glancing angle X-ray diffraction (GIXRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry and scanning electron microscopy (SEM). GIXRD and FTIR results indicate deposition of Y2 03 (BCC structure) in all cases. However, XPS results indicate nonstoichiometric cubic phase deposition on the surface of deposited films. The degree of nonstoichiometry varies with bias during deposition. Ellipsometry results indicate that the refractive index for the deposited films is varying from 1.70 to 1.83 that is typical for Y203. All films are transparent in the investigated wavelength range 300-1200 nm. SEM results indicate that the microstructure of the films is changing with applied bias. Results indicate that it is possible to deposit single phase cubic Y203 thin films at low substrate temperature by RF plasma MOCVD process. RF self-bias that decides about the energy of impinging ions on the substrates plays an important role in controlling the texture of deposited Y203 films on the substrates. Results indicate that to control the structure of films and its texture, it is important to control the bias on the substrate during deposition. The films deposited at high bias level show degradation in the crystallinity and reduction of thickness. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The formation of surface oxide layer as well as compositional changes along the thickness for NiTi shape memory alloy thin films deposited by direct current magnetron sputtering at substrate temperature of 300 degrees C in the as-deposited condition as well as in the postannealed (at 600 degrees C) condition have been thoroughly studied by using secondary ion mass spectroscopy, x-ray photoelectron spectroscopy, and scanning transmission electron microscopy-energy dispersive x-ray spectroscopy techniques. Formation of titanium oxide (predominantly titanium dioxide) layer was observed in both as-deposited and postannealed NiTi films, although the oxide layer was much thinner (8 nm) in as-deposited condition. The depletion of Ti and enrichment of Ni below the oxide layer in postannealed films also resulted in the formation of a graded microstructure consisting of titanium oxide, Ni3Ti, and B2 NiTi. A uniform composition of B2 NiTi was obtained in the postannealed film only below a depth of 200-250 nm from the surface. Postannealed film also exhibited formation of a ternary silicide (NixTiySi) at the film-substrate interface, whereas no silicide was seen in the as-deposited film. The formation of silicide also caused a depletion of Ni in the film in a region similar to 250-300 nm just above the film substrate interface. (C) 2013 American Vacuum Society.
Resumo:
In the present work, Platinum (Pt)/Copper (II) oxide (CuO) thin film based ethanol sensors were fabricated by sputtering of Pt in varying concentrations over pre-sputtered nanostructured CuO films. The responses of these sensors as a function of Pt concentrations were studied using operating temperature modulation (200-450 °C) and ethanol concentration modulation (100-2500 ppm). During these modulations, it was found that the sensing response was maximum at operating temperature near 400 °C for all the samples irrespective of the Pt concentration dispersed over them. Moreover, the sensing behavior improves for lower Pt concentration (Pt/CuO-60s) and deteriorates for higher Pt concentration (Pt/CuO-120s). In comparison with bare CuO sample, the sensitivity of Pt/CuO-60s increased up to 22% in the linear range and 33% for maximum ethanol concentration. Hence, the well dispersed optimum Pt additive concentration improves the overall sensing behavior including sensitivity, linear working range and response as well as recovery time.
Resumo:
Lithium manganese oxide (Li2-xMnO3-y) thin films have been deposited from activated Li2MnO3 powder by radio frequency magnetron sputtering for the first time in the literature and subjected to electrochemical characterization. Physicochemical characterization by X-ray diffraction has revealed the formation of the thin films with crystallographic phase identical to that of the powder target made of Li2-xMnO3-y. The Li:Mn atomic ratio for the powder and film are calculated by X-ray photoelectron spectroscopy and it is found to be 1.6:1.0. From galvanostatic charge discharge studies, a specific discharge capacity of 139 mu Ah mu m(-1) cm(-2) was obtained when cycled between 2.00 and 3.50 V vs Li/Li+. Additionally the rate capability of the thin film electrodes was studied by subjecting the cells to charge-discharge cycling at different current densities in the range from 10 mu A cm(-2) to 100 mu A cm(-2). (C) 2013 The Electrochemical Society. All rights reserved.
Resumo:
NiTi thin-films were deposited by DC magnetron sputtering from single alloy target (Ni/Ti: 45/55 aL.%). The rate of deposition and thickness of sputter deposited films were maintained to similar to 35 nm min(-1) and 4 mu m respectively. A set of sputter deposited NiTi films were selected for specific chemical treatment with the solution comprising of de-ionized water, HF and HNO3 respectively. The influence of chemical treatment on surface characteristics of NiTi films before and after chemical treatment was investigated for their structure, micro-structure and composition using different analytical techniques. Prior to chemical treatment, the composition of NiTi films using energy dispersive X-ray dispersive spectroscopy (EDS), were found to be 51.8 atomic percent of Ti and 48.2 atomic percent of Ni. The structure and morphology of these films were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD investigations, demonstrated the presence of dominant Austenite (110) phase along with Martensite phase, for untreated NiTi films whereas some additional diffraction peaks viz. (100), (101), and (200) corresponding to Rutile and Anatase phase of Titanium dioxide (TiO2) along with parent Austenite (110) phase were observed for chemically treated NiTi films. FTIR studies, it can be concluded that chemically treated films have higher tendency to form metal oxide/hydroxide than the untreated NiTi films. XPS investigations, demonstrated the presence of Ni-free surface and formation of a protective metal oxide (TiO2) layer on the surface of the films, in both the cases. The extent of the formation of surface oxide layer onto the surface of NiTi films has enhanced after chemical treatment. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The contact behavior of tin mono sulfide (SnS) nanocrystalline thin films with zinc (Zn) and silver (Ag) contacts was studied. SnS films have been deposited on glass substrates by thermal evaporation technique at a growth temperature of 300 degrees C. The as-grown SnS films composed of vertically aligned nanocrystallites with a preferential orientation along the < 010 > direction. SnS films exhibited excellent chemical stoichiometry and direct optical band gap of 1.96 eV. These films also exhibited excellent Ohmic characteristics and low electrical resistivity with Zn contacts. The observed electrical resistivity of SnS films with Zn contacts is 22 times lower than that of the resistivity with Ag contacts. The interfacing analysis reveals the formation of conductive Zn-S layer between SnS and Zn as interfacial layer. (C) 2014 Elsevier B. V. All rights reserved.
Resumo:
We have investigated the effect of post- deposition annealing on the composition and electrical properties of alumina (Al2O3) thin films. Al2O3 were deposited on n-type Si < 100 >. substrates by dc reactive magnetron sputtering. The films were subjected to post- deposition annealing at 623, 823 and 1023 K in vacuum. X-ray photoelectron spectroscopy results revealed that the composition improved with post- deposition annealing, and the film annealed at 1023 K became stoichiometric with an O/Al atomic ratio of 1.49. Al/Al2O3/Si metal-oxide-semiconductor (MOS) structures were then fabricated, and a correlation between the dielectric constant epsilon(r) and interface charge density Q(i) with annealing conditions were studied. The dielectric constant of the Al2O3 thin films increased to 9.8 with post- deposition annealing matching the bulk value, whereas the oxide charge density decreased to 3.11 x 10(11) cm(-2.) Studies on current-voltage IV characteristics indicated ohmic and Schottky type of conduction at lower electric fields (<0.16 MV cm(-1)) and space charge limited conduction at higher electric fields.