246 resultados para selective catalytic reduction
Resumo:
When sodium borohydride is added to aqueous solutions of 2,4-dinitrophenylamino acids and related derivatives, an intense red color is formed. Measurement of the red color, with a 420 filter, permits the determination of such compounds in concentrations of 0.01 to 0.06 μmole per ml. with a precision to 2%. The reaction is highly specific-while 2,4-dinitroaniline will react to the test, o-, m-, and p-nitroanilines, 2,4-dinitrophenyl aryl or alkyl ethers, and 2,4-dinitrophenyl-imidazole and pyrrolidine derivatives will not. Heretofore aromatic nitro groups have been considered resistant to attack by sodium borohydride. The method, as developed, is applicable to the evaluation of the degree of substitution of protein amino groups by fluorodinitrobenzene.
Resumo:
Polarographic and redox potential measurements on the cupric and cuprous complexes of ethylenediamine and EDTA have been carried out. From the ratio of the stability constants of the cupric and cuprous complexes, and the stability constant of the cupric complex, the stability constant of the cuprous-ethylenediamine complex is obtained. In the case of the EDTA complex it has been possible to obtain only βic/β2ous from the equilibrium concentrations of the cuprous and cupric complexes and the disproportionation constant. The inequalities for the appearance of step reduction waves have been given. The values of the stability constants of the cupric and cuprous complexes determined by the polarographic-redox potential method have been used to explain the appearance of step reduction waves in some systems and the non-appearance in other systems.
Resumo:
Durability is central to the commercialization of polymer electrolyte fuel cells (PEFCs). The incorporation of TiO2 with platinum (Pt) ameliorates both the stability and catalytic activity of cathodes in relation to pristine Pt cathodes currently being used in PEFCs. PEFC cathodes comprising carbon-supported Pt-TiO2 (Pt-TiO2/C) exhibit higher durability in relation to Pt/C cathodes as evidenced by cell polarization, impedance, and cyclic voltammetry data. The degradation in performance of the Pt-TiO2/C cathodes is 10% after 5000 test cycles as against 28% for Pt/C cathodes. These data are in conformity with the electrochemical surface area and impedance values. Pt-TiO2/C cathodes can withstand even 10,000 test cycles with nominal effect on their performance. X-ray diffraction, transmission electron microscope, and cross-sectional field-emission-scanning electron microscope studies on the catalytic electrodes reflect that incorporating TiO2 with Pt helps in mitigating the aggregation of Pt particles and protects the Nafion membrane against peroxide radicals formed during the cathodic reduction of oxygen. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3421970] All rights reserved.
Resumo:
Five new thiosulfate based inorganic-organic hybrid open-framework compounds have been synthesized employing mild reaction conditions. Of the five compounds, [Na-2(H2O)(8)][Cd(C10H8N2)( S2O3)(2)]center dot 2H(2)O, I and [Cd-2(C10H8N2)(2)(HS2O3)(2)(S2O3)(2)][(C10H9N2)(2)(C10H8N2)(2)]center dot 8H(2)O, II have one-dimensional (1D) structures and [Cd(C10H8N2)(H2O)(2)(S2O3)]center dot 2H(2)O, III, [Cd-2(C10H8N2)(3)(S2O3)(2)], IV and [Cd-2(C10H8N2)(2.5)(S2O3)(2)], V have three- dimensional (3D) structures. The 1D structures are somewhat related, formed by the bonding between tetrahedral Cd centers (CdN2S2) and 4,4'-bipyridine (bpy) units. The inter-chain spaces are occupied by the hanging thiosulfate units in both the cases along with Na(H2O)(6) chains in I and free bpy units in II. The three 3D structures have one-dimensional cadmium thiosulfate chains linked by bpy units. Interpenetration has been observed in all the 3D structures. The 3D structures appear to be related and can be derived from fgs net. Transformation studies on the 1D compound, [Na-2(H2O)(8)][Cd(C10H8N2)(S2O3)(2)]center dot 2H(2)O, I, indicated a facile formation of [Cd(C10H8N2)(H2O)(2)(S2O3)]center dot 2H(2)O, III. Prolonged heating of I gave rise to a 3D cadmium sulfate phase, [Cd-2(C10H8N2)(2)(H2O)(3)(SO4)(2)]center dot 2H(2)O, VI. Compound VI has one-dimensional cadmium sulfate chains formed by six-membered rings connected by bpy units to form a 3D structure, which appears to resemble the topological arrangement of III. Transformation studies of III indicates the formation of IV and V, and at a higher temperature a new 3D cadmium sulfate, [Cd(C10H8N2)(SO4)], VII. Compound VII has a 4 x 4 grid cadmium sulfate layers pillared by bpy units. All the compounds were characterized by PXRD, TGA, IR and UV-visible studies. Preliminary studies on the possible use of the 3D compounds (III-VII) in heterogeneous cyanosilylation of imines appear to be promising.
Resumo:
Polarographic reduction potentials of seven 3-substituted phenanthrenequinones have been determined in aqueous dioxan and aqueous ethanol under different pH conditions. The substituent effects on the reduction potentials could be correlated with the Hammett σ- constants (correlation coefficients> 0·995). The possibility of using reduction potentials as an accurate measure of resonance energy has been pointed out.
Resumo:
We report data from two related assay systems (isolated enzyme assays and whole blood assays) that C-phycocyanin a biliprotein from Spirulina platensis is a selective inhibitor of cyclooxygenase-a (COX-2) with a very low IC50 COX-2/IC50 COX-1 ratio (0.04). The extent of inhibition depends on the period of preincubation of phycocyanin with COX-2, but without any effect on the period of preincubation with COX-1. The IC50 value obtained for the inhibition of COX-2 by phycocyanin is much lower (180 nM) as compared to those of celecoxib (255 nM) and rofecoxib (401 nM), the well-known selective COX-2 inhibitors. In the human whole blood assay, phycocyanin very efficiently inhibited COX-2 with an IC50 value of 80 nM. Reduced phycocyanin and phycocyanobilin, the chromophore of phycocyanin are poor inhibitors of COX-2 without COX-2 selectivity. This suggests that apoprotein in phycocyanin plays a key role in the selective inhibition of COX-2. The present study points out that the hepatoprotective, anti-inflammatory, and anti-arthritic properties of phycocyanin reported in the literature may be due, in part, to its selective COX-2 inhibitory property, although its ability to efficiently scavenge free radicals and effectively inhibit lipid peroxidation may also be involved. (C) 2000 Academic Press.
Resumo:
The copper(II) complex [Cu(salgly) (bpy)] . 4H(2)O (1), where salgly is a tridentate glycinatosalicylaldimine Schiffbase Ligand, is prepared and structurally characterized. The complex is found to be catalytically active in the oxidation of ascorbic acid by dioxygen and the process is also effective in the presence of benzylamine giving benzaldehyde as a product, thus modeling the activity of the Cu-B site of dopamine beta-hydroxylase. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
The potassium salt of 3-methoxy and 3,5-dimethoxy benzoic acids undergoes deprotonation at the position para to the carboxylate group selectively when treated with LIC-KOR in THF at -78 degrees C and it has been extended to the synthesis of 3,5-dimethoxy-4-methyl benzoic acid. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The electrochemical reduction of oxygen has been studied on gold, boron-doped diamond (BDD) and glassy carbon (GC) electrodes in a ternary eutectic mixture of acetamide (CH3CONH2), urea (NH2CONH2) and ammonium nitrate (NH4NO3). Cyclic voltammetry (CV), differential pulse voltammetry (DPV), chronoamperometry and rotating disk electrode (RDE) voltammetry techniques have been employed to follow oxygen reduction reaction (ORR). The mechanism for the electrochemical reduction of oxygen on polycrystalline gold involves 2-step. 2-electron pathways of O-2 to H2O2 and further reduction of H2O2 to H2O. The first 2-electron reduction of O-2 to H2O2 passes through superoxide intermediate by 1-electron reduction of oxygen. Kinetic results suggest that the initial 1-electron reduction of oxygen to HO2 is the rate-determining step of ORR on gold surfaces. The chronoamperometric and ROE studies show a potential dependent change in the number of electrons on gold electrode. The oxygen reduction reaction on boron-doped diamond (BOO) seems to proceed via a direct 4-electron process. The reduction of oxygen on the glassy carbon (GC) electrode is a single step, irreversible, diffusion limited 2-electron reduction process to peroxide. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The magnetic field induced broadening of the normal to superconducting resistive transition of YBa2Cu3O7−x thin films laser deposited on (100) MgO substrates for field oriented parallel to the c axis is found to be significantly reduced in comparison with that found previously in single crystals and in films deposited on SrTiO3. This reduction in broadening is associated with a high density of defects which, while causing a slight decrease in Tc and an increase in the zero‐field transition width, seems to provide strong vortex pinning centers that reduce flux creep
Resumo:
Microporous polybenzimidazole of 250–500 μm spherical bead size from Celanese has been reacted with epichlorohydrin and sodium hydroxide and the resulting product with pendant epoxy groups has been reacted with various chelating ligands in order to augment the metal sorption capacity and selectivity of the resin. The chelating ligands used include ethylenediamine, diethylenetriamine, diethanolamine, dimethylglyoxime, L-cysteine, thiourea, dithiooxamide, glyoxal-bis-2-hydroxyanil, salicylaldehyde-ethylenediimine, and glyoxal-bis-2-mercaptoanil. The aminolysis of the pendant epoxy groups with the oligoamines has been performed in pyridine under reflux conditions, while the addition reactions with the other ligands which are alkali soluble have been carried out at room temperature in a mixture of dioxane and aqueous KOH using tetra-n-butylammonium iodide as the phase transfer catalyst. The products are found to possess high capacity and selectivity in metal sorption depending on the ligand attached.
Resumo:
The use of invariants is an important tool for analysis of distributed and concurrent systems modeled by Petri nets. For a large practical system, the computation of desired invariants by the existing techniques is a time-consuming task. This paper proposes a theoretical foundation for simplified computation of desired invariants. We provide invariant-preserving Petri net reduction rules followed by the conditions for the existence of invariants in various well-structured nets. If an invariant exists, it can be found directly from the net structure using the formulas derived, or by applying the existing techniques on the reduced net.