175 resultados para low frequency motion
Resumo:
Image filtering techniques have numerous potential applications in biomedical imaging and image processing. The design of filters largely depends on the a-priori knowledge about the type of noise corrupting the image and image features. This makes the standard filters to be application and image specific. The most popular filters such as average, Gaussian and Wiener reduce noisy artifacts by smoothing. However, this operation normally results in smoothing of the edges as well. On the other hand, sharpening filters enhance the high frequency details making the image non-smooth. An integrated general approach to design filters based on discrete cosine transform (DCT) is proposed in this study for optimal medical image filtering. This algorithm exploits the better energy compaction property of DCT and re-arrange these coefficients in a wavelet manner to get the better energy clustering at desired spatial locations. This algorithm performs optimal smoothing of the noisy image by preserving high and low frequency features. Evaluation results show that the proposed filter is robust under various noise distributions.
Resumo:
This paper presents a robust fixed order H2controller design using strengthened discrete optimal projection equations, which approximate the first order necessary optimality condition. The novelty of this work is the application of the robust H2controller to a micro aerial vehicle named Sarika2 developed in house. The controller is designed in discrete domain for the lateral dynamics of Sarika2 in the presence of low frequency atmospheric turbulence (gust) and high frequency sensor noise. The design specification includes simultaneous stabilization, disturbance rejection and noise attenuation over the entire flight envelope of the vehicle. The resulting controller performance is comprehensively analyzed by means of simulation
Resumo:
Power conversion using high frequency (HF) link converters is popular because of compact size and light weight of highfrequency transformer. This study focuses on improved utilisation of HF transformer in DC–AC applications. In practical application, the operating condition of the power converter deviates significantly from the designed considerations. These deviating factors are commutation requirements (dead-time, overlap), mismatch in device drops and presence of the fundamental frequency in load current. As a result, the HF transformer handles some amount of low-frequency components (including DC) other than desired HF components. This causes the operating point in B-H curve to shift away from its normal or idealised position and hence results poor utilisation of the HF transformer and unwanted losses. This study investigates the nature of the problem with experimental determination of approximate lumped parameter modelling and saturation behaviour (B-H curve) of the HF transformer. A simple closed-loop control algorithm with online tuning of the controller parameters is proposed to improve the utilisation of the isolation transformer. The simulation and experimental results are presented.
Resumo:
The contemporary methods for source characterization rely mainly on experiments. These methods produce inaccurate results in the low‐frequency band, where the characteristics are all the more important. Moreover, the experimental methods cannot be used at the design stage. Hence, a numerical technique to obtain the source characteristics is desirable. In this paper, the pressure‐time history and the mass‐flux‐time history obtained by means of the time‐domain analysis have been used, along with the two‐load method to compute the source characteristics. Two new computational methods for obtaining the source characteristics have been described. These are much simpler, and computationally more economical than the complete time‐domain simulation, which makes use of the method of characteristics.
Resumo:
High voltage power supplies for radar applications are investigated which are subjected to pulsed load with stringent specifications. In the proposed solution, power conversion is done in two stages. A low power-high frequency converter modulates the input voltage of a high power-low frequency converter. This method satisfies all the performance specifications and takes care of the critical aspects of HV transformer.
Resumo:
In this paper we report a systematic study of low-frequency 1/fα resistance fluctuation in a metal film at different stages of electromigration. The resistance fluctuation (noise) measurement was carried out in presence of a dc electromigration stressing current. We observe that in addition to the increase in the spectral power SV(f), the frequency dependence of the spectral power changes as the electromigration process progresses and the exponent α starts to change from 1 to higher value closer to 1.5. We interpret this change in α as arising due to an additional contribution to the spectral power with a 1/f3/2 component, which starts to contribute as the electromigration process progresses. This additional component SV(f) ∼ 1/f3/2 has been suggested to originate from long range diffusion that would accompany any electromigration process. The experimental observation finds support in a model simulation, where we also find that the enhancement of noise during electromigration stressing is accompanied by a change in spectral power frequency dependence.
Resumo:
Dielectric materials with high tunability, low loss, and desired range of permittivity are an attractive class of materials for a variety of applications in microwave components such as tunable filters, phase shifters, antennas, etc. In this article, we have investigated the low frequency dielectric properties of BaZrO3/BaTiO3 and SrTiO3/BaZrO3 superlattices of varying modulation periods for the potential application toward electrically tunable devices. The dielectric response of the superlattices as a function of temperature revealed remarkable stability for both types of superlattices, with no observed dielectric anomalies within that range. Dielectric losses were also nominally low with minimal variation within the measured temperature range. Sufficiently high tunability of ∼ 40% was observed for the BaZrO3/BaTiO3 superlattices at the lowest individual layer thicknesses. In comparison, the SrTiO3/BaZrO3 superlattices showed a minimum tunability for lowest period structures. It showed maximum tunability of ∼ 20% at 10 kHz and room temperature at an intermediate dimension of 3.85 nm periodicity superlattice. The tunability value degraded with increasing as well as decreasing periodicities for the SrTiO3/BaZrO3 superlattices. The dielectric response has been explained on the basis of size effects, interlayer coupling between dissimilar materials, domain contribution, and depolarizing electric fields.
Resumo:
Following the seminal work of Charney and Shukla (198 1), the tropical climate is recognised to be more predictable than extra tropical climate as it is largely forced by 'external' slowly varying forcing and less sensitive to initial conditions. However, the Indian summer monsoon is an exception within the tropics where 'internal' low frequency (LF) oscillations seem to make significant contribution to its interannual variability (IAV) and makes it sensitive to initial conditions. Quantitative estimate of contribution of 'internal' dynamics to IAV of Indian monsoon is made using long experiments with an atmospheric general circulation model (AGCM) and through analysis of long daily observations. Both AGCM experiments and observations indicate that more than 50% of IAV of the monsoon is contributed by 'internal' dynamics making the predictable signal (external component) burried in unpredictable noise (internal component) of comparable amplitude. Better understanding of the nature of the 'internal' LF variability is crucial for any improvement in predicition of seasonal mean monsoon. Nature of 'internal' LF variability of the monsoon and mechanism responsible for it are investigated and shown that vigorous monsoon intraseasonal oscillations (ISO's) with time scale between 10-70 days are primarily responsible for generating the 'internal' IAV. The monsoon ISO's do this through scale interactions with synoptic disturbances (1-7 day time scale) on one hand and the annual cycle on the other. The spatial structure of the monsoon ISO's is similar to that of the seasonal mean. It is shown that frequency of occurance of strong (weak) phases of the ISO is different in different seasons giving rise to stronger (weaker) than normal monsoon. Change in the large scale circulation during strong (weak) phases of the ISO make it favourable (inhibiting) for cyclogenesis and gives rise to space time clustering of synoptic activity. This process leads to enhanced (reduced) rainfall in seasons of higher frequency of occurence strong (weak) phases of monsoon ISO.
Resumo:
The development of a neural network based power system damping controller (PSDC) for a static VAr compensator (SVC), designed to enhance the damping characteristics of a power system network representing a part of the Electricity Generating Authority of Thailand (EGAT) system is presented. The proposed stabilising controller scheme of the SVC consists of a neuro-identifier and a neuro-controller which have been developed based on a functional link network (FLN) model. A recursive online training algorithm has been utilised to train the two networks. The simulation results have been obtained under various operating conditions and disturbance cases to show that the proposed stabilising controller can provide a better damping to the low frequency oscillations, as compared to the conventional controllers. The effectiveness of the proposed stabilising controller has also been compared with a conventional power system stabiliser provided in the generator excitation system
Resumo:
The development of a neural network based power system damping controller (PSDC) for a static Var compensator (SVC), designed to enhance the damping characteristics of a power system network representing a part of the Electricity Generating Authority of Thailand (EGAT) system is presented. The proposed stabilising controller scheme of the SVC consists of a neuro-identifier and a neuro-controller which have been developed based on a functional link network (FLN) model. A recursive online training algorithm has been utilised to train the two networks. The simulation results have been obtained under various operating conditions and disturbance cases to show that the proposed stabilising controller can provide a better damping to the low frequency oscillations, as compared to the conventional controllers. The effectiveness of the proposed stabilising controller has also been compared with a conventional power system stabiliser provided in the generator excitation system.
Resumo:
A current injection pattern in Electrical Impedance Tomography (EIT) has its own current distribution profile within the domain under test. Hence, different current patterns have different sensitivity, spatial resolution and distinguishability. Image reconstruction studies with practical phantoms are essential to assess the performance of EIT systems for their validation, calibration and comparison purposes. Impedance imaging of real tissue phantoms with different current injection methods is also essential for better assessment of the biomedical EIT systems. Chicken tissue paste phantoms and chicken tissue block phantoms are developed and the resistivity image reconstruction is studied with different current injection methods. A 16-electrode array is placed inside the phantom tank and the tank is filled with chicken muscle tissue paste or chicken tissue blocks as the background mediums. Chicken fat tissue, chicken bone, air hole and nylon cylinders are used as the inhomogeneity to obtained different phantom configurations. A low magnitude low frequency constant sinusoidal current is injected at the phantom boundary with opposite and neighboring current patterns and the boundary potentials are measured. Resistivity images are reconstructed from the boundary data using EIDORS and the reconstructed images are analyzed with the contrast parameters calculated from their elemental resistivity profiles. Results show that the resistivity profiles of all the phantom domains are successfully reconstructed with a proper background resistivity and high inhomogeneity resistivity for both the current injection methods. Reconstructed images show that, for all the chicken tissue phantoms, the inhomogeneities are suitably reconstructed with both the current injection protocols though the chicken tissue block phantom and opposite method are found more suitable. It is observed that the boundary potentials of the chicken tissue block phantoms are higher than the chicken tissue paste phantom. SNR of the chicken tissue block phantoms are found comparatively more and hence the chicken tissue block phantom is found more suitable for its lower noise performance. The background noise is found less in opposite method for all the phantom configurations which yields the better resistivity images with high PCR and COC and proper IRMean and IRMax neighboring method showed higher noise level for both the chicken tissue paste phantoms and chicken tissue block phantoms with all the inhomogeneities. Opposite method is found more suitable for both the chicken tissue phantoms, and also, chicken tissue block phantoms are found more suitable compared to the chicken tissue paste phantom. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We report our search for and a possible detection of periodic radio pulses at 34.5 MHz from the Fermi Large Area Telescope pulsar J1732-3131. The candidate detection has been possible in only one of the many sessions of observations made with the low-frequency array at Gauribidanur, India, when the otherwise radio weak pulsar may have apparently brightened many folds. The candidate dispersion measure along the sight line, based on the broad periodic profiles from �20min of data, is estimated to be 15.44 ± 0.32 pccc -1. We present the details of our periodic and single-pulse search, and discuss the results and their implications relevant to both, the pulsar and the intervening medium. © 2012 RAS.
Resumo:
This paper deals with the role of the higher-order evanescent modes generated at the area discontinuities in the acoustic attenuation characteristics of an elliptical end-chamber muffler with an end-offset inlet and end-centered outlet. It has been observed that with an increase in length, the muffler undergoes a transition from being acoustically short to acoustically long. Short end chambers and long end chambers are characterized by transverse plane waves and axial plane waves, respectively, in the low-frequency range. The nondimensional frequency limit k(0)(D-1/2) or k(0)R(0) as well as the chamber length to inlet/outlet pipe diameter ratio, i.e., L/d(0), up to which the muffler behaves like a short chamber and the corresponding limit beyond which the muffler is acoustically long are determined. The limits between which neither the transverse plane-wave model nor the conventional axial plane-wave model gives a satisfactory prediction have also been determined, the region being called the intermediate range. The end-correction expression for this muffler configuration in the acoustically long limit has been obtained using 3-D FEA carried on commercial software, covering most of the dimension range used in the design exercise. Development of a method of combining the transverse plane wave model with the axial plane wave model using the impedance Z] matrix is another noteworthy contribution of this work.
Resumo:
Constant stress accelerated ageing experiments were conducted on unfilled epoxy and epoxy alumina nanocomposites with different filler loadings of 0.1, 1 and 5 wt%. Electrical (6 kV/mm), thermal (60 degrees C) and combined electrothermal (6 kV/mm and 60 degrees C) ageing experiments were performed for a duration of 250 h. The leakage current through the samples were continuously monitored and the variation in the tan delta values with ageing duration was also monitored. It was observed that the increase in the tan delta value with ageing duration was less for the epoxy alumina nanocomposites as compared to the unfilled epoxy. Dielectric spectroscopy measurements were performed on the samples before and after the ageing in the frequency range of 10(-2) to 10(6) Hz. The permittivity and tan delta values were found to increase in the low frequency range. The volume resistivity of unfilled epoxy and epoxy alumina nanocomposites were also measured before and after the ageing. The volume resistivity improved marginally for the thermally aged samples, but reduced for the electrically aged and the electrothermally aged samples. The decrease in the value of volume resistivity was more for the multistress aged unfilled epoxy samples as compared to the multistress aged epoxy alumina nanocomposites. It was also observed that the unfilled epoxy samples having a higher value of tan delta failed first. The time to failure of the samples showed an increasing trend with an increase in the nano filler loading of epoxy alumina nanocomposites.
Resumo:
Parabolized stability equation (PSE) models are being deve loped to predict the evolu-tion of low-frequency, large-scale wavepacket structures and their radiated sound in high-speed turbulent round jets. Linear PSE wavepacket models were previously shown to be in reasonably good agreement with the amplitude envelope and phase measured using a microphone array placed just outside the jet shear layer. 1,2 Here we show they also in very good agreement with hot-wire measurements at the jet center line in the potential core,for a different set of experiments. 3 When used as a model source for acoustic analogy, the predicted far field noise radiation is in reasonably good agreement with microphone measurements for aft angles where contributions from large -scale structures dominate the acoustic field. Nonlinear PSE is then employed in order to determine the relative impor-tance of the mode interactions on the wavepackets. A series of nonlinear computations with randomized initial conditions are use in order to obtain bounds for the evolution of the modes in the natural turbulent jet flow. It was found that n onlinearity has a very limited impact on the evolution of the wavepackets for St≥0. 3. Finally, the nonlinear mechanism for the generation of a low-frequency mode as the difference-frequency mode 4,5 of two forced frequencies is investigated in the scope of the high Reynolds number jets considered in this paper.