139 resultados para barrier membrane
Resumo:
A low Schottky barrier height (SBH) at source/drain contact is essential for achieving high drive current in atomic layer MoS(2-)channel-based field effect transistors. Approaches such as choosing metals with appropriate work functions and chemical doping are employed previously to improve the carrier injection from the contact electrodes to the channel and to mitigate the SBH between the MoS2 and metal. Recent experiments demonstrate significant SBH reduction when graphene layer is inserted between metal slab (Ti and Ni) and MoS2. However, the physical or chemical origin of this phenomenon is not yet clearly understood. In this work, density functional theory simulations are performed, employing pseudopotentials with very high basis sets to get insights of the charge transfer between metal and monolayer MoS2 through the inserted graphene layer. Our atomistic simulations on 16 different interfaces involving five different metals (Ti, Ag, Ru, Au, and Pt) reveal that (i) such a decrease in SBH is not consistent among various metals, rather an increase in SBH is observed in case of Au and Pt; (ii) unlike MoS2-metal interface, the projected dispersion of MoS2 remains preserved in any MoS2-graphene- metal system with shift in the bands on the energy axis. (iii) A proper choice of metal (e.g., Ru) may exhibit ohmic nature in a graphene-inserted MoS2-metal contact. These understandings would provide a direction in developing high-performance transistors involving heteroatomic layers as contact electrodes. (c) 2016 AIP Publishing LLC.
Resumo:
The serotonin(1A) receptor belongs to the superfamily of G protein-coupled receptors (GPCRs) and is a potential drug target in neuropsychiatric disorders. The receptor has been shown to require membrane cholesterol for its organization, dynamics and function. Although recent work suggests a close interaction of cholesterol with the receptor, the structural integrity of the serotonin(1A) receptor in the presence of cholesterol has not been explored. In this work, we have carried out all atom molecular dynamics simulations, totaling to 3s, to analyze the effect of cholesterol on the structure and dynamics of the serotonin(1A) receptor. Our results show that the presence of physiologically relevant concentration of membrane cholesterol alters conformational dynamics of the serotonin(1A) receptor and, on an average lowers conformational fluctuations. Our results show that, in general, transmembrane helix VII is most affected by the absence of membrane cholesterol. These results are in overall agreement with experimental data showing enhancement of GPCR stability in the presence of membrane cholesterol. Our results constitute a molecular level understanding of GPCR-cholesterol interaction, and represent an important step in our overall understanding of GPCR function in health and disease.
Resumo:
Electrochemical exfoliation technique using the pyrophosphate anion derived from tetra sodium pyrophosphate was employed to produce graphene. As-synthesized graphene was then drop dried over a cold rolled Cu sheet. Ni coating was then electrodeposited over bare Cu and graphene-Cu substrates. Both substrates were then isothermally annealed at 800 degrees C for 3 h. WDS analysis showed substantial atomic diffusion in annealed Ni-Cu sample. Cu-graphene-Ni sample, on the other hand, showed negligible diffusion illustrating the diffusion barrier property of the graphene coating. (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
Electrochemical exfoliation technique using the pyrophosphate anion derived from tetra sodium pyrophosphate was employed to produce graphene. As-synthesized graphene was then drop dried over a cold rolled Cu sheet. Ni coating was then electrodeposited over bare Cu and graphene-Cu substrates. Both substrates were then isothermally annealed at 800 degrees C for 3 h. WDS analysis showed substantial atomic diffusion in annealed Ni-Cu sample. Cu-graphene-Ni sample, on the other hand, showed negligible diffusion illustrating the diffusion barrier property of the graphene coating. (C) 2016 Elsevier B.V. All rights reserved.