229 resultados para assisted selection
Resumo:
In the underlay mode of cognitive radio, secondary users are allowed to transmit when the primary is transmitting, but under tight interference constraints that protect the primary. However, these constraints limit the secondary system performance. Antenna selection (AS)-based multiple antenna techniques, which exploit spatial diversity with less hardware, help improve secondary system performance. We develop a novel and optimal transmit AS rule that minimizes the symbol error probability (SEP) of an average interference-constrained multiple-input-single-output secondary system that operates in the underlay mode. We show that the optimal rule is a non-linear function of the power gain of the channel from the secondary transmit antenna to the primary receiver and from the secondary transmit antenna to the secondary receive antenna. We also propose a simpler, tractable variant of the optimal rule that performs as well as the optimal rule. We then analyze its SEP with L transmit antennas, and extensively benchmark it with several heuristic selection rules proposed in the literature. We also enhance these rules in order to provide a fair comparison, and derive new expressions for their SEPs. The results bring out new inter-relationships between the various rules, and show that the optimal rule can significantly reduce the SEP.
Resumo:
Novel transmit antenna selection techniques are conceived for Spatial Modulation (SM) systems and their symbol error rate (SER) performance is investigated. Specifically, low-complexity Euclidean Distance optimized Antenna Selection (EDAS) and Capacity Optimized Antenna Selection (COAS) are studied. It is observed that the COAS scheme gives a better SER performance than the EDAS scheme. We show that the proposed antenna selection based SM systems are capable of attaining a significant gain in signal-to-noise ratio (SNR) compared to conventional SM systems, and also outperform the conventional MIMO systems employing antenna selection at both low and medium SNRs.
Resumo:
Bilateral filters perform edge-preserving smoothing and are widely used for image denoising. The denoising performance is sensitive to the choice of the bilateral filter parameters. We propose an optimal parameter selection for bilateral filtering of images corrupted with Poisson noise. We employ the Poisson's Unbiased Risk Estimate (PURE), which is an unbiased estimate of the Mean Squared Error (MSE). It does not require a priori knowledge of the ground truth and is useful in practical scenarios where there is no access to the original image. Experimental results show that quality of denoising obtained with PURE-optimal bilateral filters is almost indistinguishable with that of the Oracle-MSE-optimal bilateral filters.
Resumo:
Classification of a large document collection involves dealing with a huge feature space where each distinct word is a feature. In such an environment, classification is a costly task both in terms of running time and computing resources. Further it will not guarantee optimal results because it is likely to overfit by considering every feature for classification. In such a context, feature selection is inevitable. This work analyses the feature selection methods, explores the relations among them and attempts to find a minimal subset of features which are discriminative for document classification.
Resumo:
In this paper, we present a methodology for identifying best features from a large feature space. In high dimensional feature space nearest neighbor search is meaningless. In this feature space we see quality and performance issue with nearest neighbor search. Many data mining algorithms use nearest neighbor search. So instead of doing nearest neighbor search using all the features we need to select relevant features. We propose feature selection using Non-negative Matrix Factorization(NMF) and its application to nearest neighbor search. Recent clustering algorithm based on Locally Consistent Concept Factorization(LCCF) shows better quality of document clustering by using local geometrical and discriminating structure of the data. By using our feature selection method we have shown further improvement of performance in the clustering.
Resumo:
Outlier detection in high dimensional categorical data has been a problem of much interest due to the extensive use of qualitative features for describing the data across various application areas. Though there exist various established methods for dealing with the dimensionality aspect through feature selection on numerical data, the categorical domain is actively being explored. As outlier detection is generally considered as an unsupervised learning problem due to lack of knowledge about the nature of various types of outliers, the related feature selection task also needs to be handled in a similar manner. This motivates the need to develop an unsupervised feature selection algorithm for efficient detection of outliers in categorical data. Addressing this aspect, we propose a novel feature selection algorithm based on the mutual information measure and the entropy computation. The redundancy among the features is characterized using the mutual information measure for identifying a suitable feature subset with less redundancy. The performance of the proposed algorithm in comparison with the information gain based feature selection shows its effectiveness for outlier detection. The efficacy of the proposed algorithm is demonstrated on various high-dimensional benchmark data sets employing two existing outlier detection methods.
Resumo:
We propose energy harvesting technologies and cooperative relaying techniques to power the devices and improve reliability. We propose schemes to (a) maximize the packet reception ratio (PRR) by cooperation and (b) minimize the average packet delay (APD) by cooperation amongst nodes. Our key result and insight from the testbed implementation is about total data transmitted by each relay. A greedy policy that relays more data under a good harvesting condition turns out to be a sub optimal policy. This is because, energy replenishment is a slow process. The optimal scheme offers a low APD and also improves PRR.
Resumo:
The timer-based selection scheme is a popular, simple, and distributed scheme that is used to select the best node from a set of available nodes. In it, each node sets a timer as a function of a local preference number called a metric, and transmits a packet when its timer expires. The scheme ensures that the timer of the best node, which has the highest metric, expires first. However, it fails to select the best node if another node transmits a packet within Delta s of the transmission by the best node. We derive the optimal timer mapping that maximizes the average success probability for the practical scenario in which the number of nodes in the system is unknown but only its probability distribution is known. We show that it has a special discrete structure, and present a recursive characterization to determine it. We benchmark its performance with ad hoc approaches proposed in the literature, and show that it delivers significant gains. New insights about the optimality of some ad hoc approaches are also developed.
Resumo:
The standard method of quantum state tomography (QST) relies on the measurement of a set of noncommuting observables, realized in a series of independent experiments. Ancilla-assisted QST (AAQST) proposed by Nieuwenhuizen and co-workers Phys. Rev. Lett. 92, 120402 (2004)] greatly reduces the number of independent measurements by exploiting an ancilla register in a known initial state. In suitable conditions AAQST allows mapping out density matrix of an input register in a single experiment. Here we describe methods for explicit construction of AAQST experiments in multiqubit registers. We also report nuclear magnetic resonance studies on AAQST of (i) a two-qubit input register using a one-qubit ancilla in an isotropic liquid-state system and (ii) a three-qubit input register using a two-qubit ancilla register in a partially oriented system. The experimental results confirm the effectiveness of AAQST in such multiqubit registers.
Resumo:
Porous fungus-like ZnO nanostructures have been synthesized by simple thermal annealing of the hydrothermally synthesized sheet-like ZnS(en)(0.5) complex precursor in air at 600 degrees C. Structural and morphological changes occurring during ZnS(en)(0.5) -> ZnS -> ZnO transformations have been observed closely by annealing the as-synthesized precursor at 100-600 degrees C. Wurtzite ZnS nanosheets and ZnS-ZnO composites are obtained at temperatures of 400 degrees C and 500 degrees C, respectively. Thermal decomposition and oxidation of the ZnS(en) 0.5 nanosheets have been confirmed by differential scanning calorimetry and thermo-gravimetric analysis. The visible light driven photocatalytic degradation of methylene blue dye has been demonstrated in the synthesized samples. ZnS-ZnO composite shows the highest dye degradation efficiency of 74% due to the formation of surface complex as well as higher visible light absorption as a result of band-gap narrowing effect. The porous ZnO nanostructures show efficient visible photoluminescence (PL) emission with a colour coordinate of (0.29, 0.35), which is close to that of white light (0.33, 0.33). The efficient visible PL emission as well as visible light driven photocatalytic activity of the materials synthesized in the present work might be very attractive for their applications in future optoelectronic devices, including in white light emitting devices.
Resumo:
Silicon nanowires were grown on Si substrates by electron beam evaporation (EBE) was demonstrated using Indium as an alternate catalyst to gold. We have studied the effect of substrate (growth) temperature, deposition time on the growth of nanowires. It was observed that a narrow temperature window from 300 degrees C to 400 degrees C for the nanowires growth. At growth temperature >= 400 degrees C suppression of nanowires growth was observed due to evaporation of catalyst particle. It is also observed that higher deposition times also leading to the absence of nanowire growth as well as uncatalyzed deposition on the nanowires side walls due to limited surface diffusion of ad atoms and catalyst evaporation.
Resumo:
Magnon contribution to the resistance of ferromagnetic film like Permalloy is investigated by magnetotransport measurements. We are able to observe and distinguish Anisotropic-Magnetoresistance(AMR)(1) and Magnon Magnetoresistance(MMR)(2) contributions clearly in PLD grown Permalloy films. A linear non-saturating longitudinal MR observed in high field regime for permalloy films could never be explained using AMR but only MMR can account for it.
Resumo:
Single receive antenna selection (AS) is a popular method for obtaining diversity benefits without the additional costs of multiple radio receiver chains. Since only one antenna receives at any time, the transmitter sends a pilot multiple times to enable the receiver to estimate the channel gains of its N antennas to the transmitter and select an antenna. In time-varying channels, the channel estimates of different antennas are outdated to different extents. We analyze the symbol error probability (SEP) in time-varying channels of the N-pilot and (N+1)-pilot AS training schemes. In the former, the transmitter sends one pilot for each receive antenna. In the latter, the transmitter sends one additional pilot that helps sample the channel fading process of the selected antenna twice. We present several new results about the SEP, optimal energy allocation across pilots and data, and optimal selection rule in time-varying channels for the two schemes. We show that due to the unique nature of AS, the (N+1)-pilot scheme, despite its longer training duration, is much more energy-efficient than the conventional N-pilot scheme. An extension to a practical scenario where all data symbols of a packet are received by the same antenna is also investigated.
Resumo:
We report a blood pressure evaluation methodology by recording the radial arterial pulse waveform in real time using a fiber Bragg grating pulse device (FBGPD). Here, the pressure responses of the arterial pulse in the form of beat-to-beat pulse amplitude and arterial diametrical variations are monitored. Particularly, the unique signatures of pulse pressure variations have been recorded in the arterial pulse waveform, which indicate the systolic and diastolic blood pressure while the patient is subjected to the sphygmomanometric blood pressure examination. The proposed method of blood pressure evaluation using FBGPD has been validated with the auscultatory method of detecting the acoustic pulses (Korotkoff sounds) by an electronic stethoscope. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)
Resumo:
An opportunistic, rate-adaptive system exploits multi-user diversity by selecting the best node, which has the highest channel power gain, and adapting the data rate to selected node's channel gain. Since channel knowledge is local to a node, we propose using a distributed, low-feedback timer backoff scheme to select the best node. It uses a mapping that maps the channel gain, or, in general, a real-valued metric, to a timer value. The mapping is such that timers of nodes with higher metrics expire earlier. Our goal is to maximize the system throughput when rate adaptation is discrete, as is the case in practice. To improve throughput, we use a pragmatic selection policy, in which even a node other than the best node can be selected. We derive several novel, insightful results about the optimal mapping and develop an algorithm to compute it. These results bring out the inter-relationship between the discrete rate adaptation rule, optimal mapping, and selection policy. We also extensively benchmark the performance of the optimal mapping with several timer and opportunistic multiple access schemes considered in the literature, and demonstrate that the developed scheme is effective in many regimes of interest.