417 resultados para Wave Parameters
Resumo:
A model equation is derived to study trapped nonlinear waves with a turning effect, occurring in disturbances induced on a two-dimensional steady flow. Only unimodal disturbances under the short wave assumption are considered, when the wave front of the induced disturbance is plane. In the neighbourhood of certain special points of sonic-type singularity, the disturbances are governed by a single first-order partial differential equation in two independent variables. The equation depends on the steady flow through three parameters, which are determined by the variations of velocity and depth, for example (in the case of long surface water waves), along and perpendicular to the wave front. These parameters help us to examine various relative effects. The presence of shocks in a continuously accelerating or decelerating flow has been studied in detail.
Resumo:
Internal structures of extraordinarily luminescent semiconductor nanoparticles are probed with photoelectron spectroscopy, establishing a gradient alloy structure as an essential ingredient for the observed phenomenon. Comparative photoluminescence lifetime measurements provide direct evidence for a minimization of nonradiative decay channels because of the removal of interfacial defects due to a progressive change in the lattice parameters in such graded structures, exhibiting a nearly single exponential decay Quantum mechanical, calculations suggest a differential extent of spatial collapse of the electron and the hole wave functions in a way that helps to enhance the photoluminescence efficiency, while at the same time increasing the lifetime of the excited state, as observed in the experiments.
Resumo:
Be/X-ray binary pulsars have wide eccentric orbits and hence the angle of periastron of the orbit is very well defined in these sources. The presence of an X-ray pulsar allows for accurate measurements of orbital elements. A Be star usually is a rapidly rotating star and hence will deviate from spherical geometry. The tidal interaction between the neutron star and the Be star will add to the distortion of the Be star and alter its mass distribution. Thus a measurable rate of apsidal motion is expected from these systems. In this paper, we present the first conclusive detection of apsidal motion of the binary 4U 0115+63. We also present new and accurate orbital parameters of the Be/X-ray binaries V0332+53 and 2S 1417-624.
Resumo:
In this paper, elastic wave propagation is studied in a nanocomposite reinforced with multiwall carbon nanotubes (CNTs). Analysis is performed on a representative volume element of square cross section. The frequency content of the exciting signal is at the terahertz level. Here, the composite is modeled as a higher order shear deformable beam using layerwise theory, to account for partial shear stress transfer between the CNTs and the matrix. The walls of the multiwall CNTs are considered to be connected throughout their length by distributed springs, whose stiffness is governed by the van der Waals force acting between the walls of nanotubes. The analyses in both the frequency and time domains are done using the wavelet-based spectral finite element method (WSFEM). The method uses the Daubechies wavelet basis approximation in time to reduce the governing PDE to a set of ODEs. These transformed ODEs are solved using a finite element (FE) technique by deriving an exact interpolating function in the transformed domain to obtain the exact dynamic stiffness matrix. Numerical analyses are performed to study the spectrum and dispersion relations for different matrix materials and also for different beam models. The effects of partial shear stress transfer between CNTs and matrix on the frequency response function (FRF) and the time response due to broadband impulse loading are investigated for different matrix materials. The simultaneous existence of four coupled propagating modes in a double-walled CNT-composite is also captured using modulated sinusoidal excitation.
Resumo:
We report a method for the deposition of thin films and thick coatings of metal oxides through the liquid medium, involving the micro waveirradiation of a solution of a metal-organic complex in a suitable dielectric solvent. The process is a combination of sol-gel and dip-coating methods, wherein coatings can be obtained on nonconducting and semiconducting substrates, within a few minutes. Thin films of nanostructured ZnO (wurtzite) have been obtained on Si(100), glass and polymer substrates, the nanostructure determined by process parameters The coatings are strongly adherent and uniform over 15 mm x 15 mm, the growth rate similar to 0.25 mu m/min Coatings of nanocrystalline Fe2O3 and Ga2O3 have also been obtained The method is scalable to larger substrates, and is promising as a low temperature technique for coating dielectric substrates, including flexible polymers. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The density-wave theory of Ramakrishnan and Yussouff is extended to provide a scheme for describing dislocations and other topological defects in crystals. Quantitative calculations are presented for the order-parameter profiles, the atomic configuration, and the free energy of a screw dislocation with Burgers vector b=(a/2, a/2, a/2) in a bcc solid. These calculations are done using a simple parametrization of the direct correlation function and a gradient expansion. It is conventional to express the free energy of the dislocation in a crystal of size R as (λb2/4π)ln(αR/‖b‖), where λ is the shear elastic constant, and α is a measure of the core energy. Our results yield for Na the value α≃1.94a/(‖c1’’‖)1/2 (≃1.85) at the freezing temperature (371 K) and α≃2.48a/(‖c1’’‖)1/2 at 271 K, where c1’’ is the curvature of the first peak of the direct correlation function c(q). Detailed results for the density distribution in the dislocation, particularly the core region, are also presented. These show that the dislocation core has a columnar character. To our knowledge, this study represents the first calculation of dislocation structure, including the core, within the framework of an order-parameter theory and incorporating thermal effects.
Resumo:
Abstract. In order to estimate the acoustic energy scattered when a unit volume of free turbulence, such as in free jets, interacts with a plane steady sound wave, theoretical expressions are derived for two simple models of turbulence: eddy model and isotropic model. The effect of convection by mean motion of the energy-bearing eddies on the incident sound wave and on the sound generated from wave-turbulence interaction is taken into account. Finally, by means of a representative calculation,the directionality pattern and Mach number dependence of the noise so generated is discussed.
Resumo:
A damage detection and imaging methodology based on symmetry of neighborhood sensor path and similarity of signal patterns with respect to radial paths in a circular array of sensors has been developed It uses information regarding Limb wave propagation along with a triangulation scheme to rapidly locate and quantify the severity of damage without using all of the sensor data. In a plate like structure, such a scheme can be effectively employed besides full field imaging of wave scattering pattern from the damage, if present in the plate. This new scheme is validated experimentally. Hole and corrosion type damages have been detected and quantified using the proposed scheme successfully. A wavelet based cumulative damage index has been studied which shows monotonic sensitivity against the severity of the damage. which is most desired in a Structural Health Monitoring system. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Several investigators in the past have used the radiance depression (with respect to clear-sky infrared radiance), resulting from the presence of mineral dust aerosols in the atmosphere, as an index of dust aerosol load in the atmosphere during local noon. Here, we have used a modified approach to retrieve dust index during night since assessment of diurnal average infrared dust forcing essentially requires information on dust aerosols during night. For this purpose, we used infrared radiance (10.5-12.5 mu m), acquired from the METEOSAT-5 satellite (similar to 5 km resolution). We found that the `dust index' algorithm, valid for daytime, will no longer hold during the night because dust is then hotter than the theoretical dust-free reference. Hence we followed a `minimum reference' approach instead of a conventional `maximum reference' approach. A detailed analysis suggests that the maximum dust load occurs during the daytime. Over the desert regions of India and Africa, maximum change in dust load is as much as a factor of four between day and night and factor of two variations are commonly observed. By realizing the consequent impact on long wave dust forcing, sensitivity studies were carried out, which indicate that utilizing day time data for estimating the diurnally averaged long-wave dust radiative forcing results in significant errors (as much as 50 to 70%). Annually and regionally averaged long wave dust radiative forcing (which account for the diurnal variation of dust) at the top of the atmosphere over Afro-Asian region is 2.6 +/- 1.8 W m(-2), which is 30 to 50% lower than those reported earlier. Our studies indicate that neglecting diurnal variation of dust while assessing its radiative impact leads to an overestimation of dust radiative forcing, which in turn result in underestimation of the radiative impact of anthropogenic aerosols.
Resumo:
We give an explicit, direct, and fairly elementary proof that the radial energy eigenfunctions for the hydrogen atom in quantum mechanics, bound and scattering states included, form a complete set. The proof uses only some properties of the confluent hypergeometric functions and the Cauchy residue theorem from analytic function theory; therefore it would form useful supplementary reading for a graduate course on quantum mechanics.
Resumo:
In this article, an ultrasonic wave propagation in graphene sheet is studied using nonlocal elasticity theory incorporating small scale effects. The graphene sheet is modeled as an isotropic plate of one-atom thick. For this model, the nonlocal governing differential equations of motion are derived from the minimization of the total potential energy of the entire system. An ultrasonic type of wave propagation model is also derived for the graphene sheet. The nonlocal scale parameter introduces certain band gap region in in-plane and flexural wave modes where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite or wave speed tends to zero. The frequency at which this phenomenon occurs is called the escape frequency. The explicit expressions for cutoff frequencies and escape frequencies are derived. The escape frequencies are mainly introduced because of the nonlocal elasticity. Obviously these frequencies are function of nonlocal scaling parameter. It has also been obtained that these frequencies are independent of y-directional wavenumber. It means that for any type of nanostructure, the escape frequencies are purely a function of nonlocal scaling parameter only. It is also independent of the geometry of the structure. It has been found that the cutoff frequencies are function of nonlocal scaling parameter (e(0)a) and the y-directional wavenumber (k(y)). For a given nanostructure, nonlocal small scale coefficient can be obtained by matching the results from molecular dynamics (MD) simulations and the nonlocal elasticity calculations. At that value of the nonlocal scale coefficient, the waves will propagate in the nanostructure at that cut-off frequency. In the present paper, different values of e(o)a are used. One can get the exact e(0)a for a given graphene sheet by matching the MD simulation results of graphene with the results presented in this paper. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Shell model calculation of defect energies in alkali halides have been carried out using the ion-dependent, crystal-independent potential parameters of Sangster and Atwood (1978). Results indicate that appreciable differences exist between barrier heights for migration of cations and anions. While barrier heights for cations are generally lower than for anions in alkali halides of NaCl structure, the opposite is true in alkali halides of CsCl structure.