177 resultados para VECTOR SPACE MODEL
Resumo:
A spring-mass-lever (SML) model is introduced in this paper for a single-input-single-output compliant mechanism to capture its static and dynamic behavior. The SML model is a reduced-order model, and its five parameters provide physical insight and quantify the stiffness and inertia(1) at the input and output ports as well as the transformation of force and displacement between the input and output. The model parameters can be determined with reasonable accuracy without performing dynamic or modal analysis. The paper describes two uses of the SML model: computationally efficient analysis of a system of which the compliant mechanism is a part; and design of compliant mechanisms for the given user-specifications. During design, the SML model enables determining the feasible parameter space of user-specified requirements, assessing the suitability of a compliant mechanism to meet the user-specifications and also selecting and/or re-designing compliant mechanisms from an existing database. Manufacturing constraints, material choice, and other practical considerations are incorporated into this methodology. A micromachined accelerometer and a valve mechanism are used as examples to show the effectiveness of the SML model in analysis and design. (C) 2012 Published by Elsevier Ltd.
Resumo:
This article is concerned with the evolution of haploid organisms that reproduce asexually. In a seminal piece of work, Eigen and coauthors proposed the quasispecies model in an attempt to understand such an evolutionary process. Their work has impacted antiviral treatment and vaccine design strategies. Yet, predictions of the quasispecies model are at best viewed as a guideline, primarily because it assumes an infinite population size, whereas realistic population sizes can be quite small. In this paper we consider a population genetics-based model aimed at understanding the evolution of such organisms with finite population sizes and present a rigorous study of the convergence and computational issues that arise therein. Our first result is structural and shows that, at any time during the evolution, as the population size tends to infinity, the distribution of genomes predicted by our model converges to that predicted by the quasispecies model. This justifies the continued use of the quasispecies model to derive guidelines for intervention. While the stationary state in the quasispecies model is readily obtained, due to the explosion of the state space in our model, exact computations are prohibitive. Our second set of results are computational in nature and address this issue. We derive conditions on the parameters of evolution under which our stochastic model mixes rapidly. Further, for a class of widely used fitness landscapes we give a fast deterministic algorithm which computes the stationary distribution of our model. These computational tools are expected to serve as a framework for the modeling of strategies for the deployment of mutagenic drugs.
Resumo:
We investigate the possibility of projecting low-dimensional chaos from spatiotemporal dynamics of a model for a kind of plastic instability observed under constant strain rate deformation conditions. We first discuss the relationship between the spatiotemporal patterns of the model reflected in the nature of dislocation bands and the nature of stress serrations. We show that at low applied strain rates, there is a one-to-one correspondence with the randomly nucleated isolated bursts of mobile dislocation density and the stress drops. We then show that the model equations are spatiotemporally chaotic by demonstrating the number of positive Lyapunov exponents and Lyapunov dimension scale with the system size at low and high strain rates. Using a modified algorithm for calculating correlation dimension density, we show that the stress-strain signals at low applied strain rates corresponding to spatially uncorrelated dislocation bands exhibit features of low-dimensional chaos. This is made quantitative by demonstrating that the model equations can be approximately reduced to space-independent model equations for the average dislocation densities, which is known to be low-dimensionally chaotic. However, the scaling regime for the correlation dimension shrinks with increasing applied strain rate due to increasing propensity for propagation of the dislocation bands.
Resumo:
In this paper we discuss SU(N) Chern-Simons theories at level k with both fermionic and bosonic vector matter. In particular we present an exact calculation of the free energy of the N = 2 supersymmetric model (with one chiral field) for all values of the `t Hooft coupling in the large N limit. This is done by using a generalization of the standard Hubbard-Stratanovich method because the SUSY model contains higher order polynomial interactions.
Resumo:
This paper presents a decentralized/peer-to-peer architecture-based parallel version of the vector evaluated particle swarm optimization (VEPSO) algorithm for multi-objective design optimization of laminated composite plates using message passing interface (MPI). The design optimization of laminated composite plates being a combinatorially explosive constrained non-linear optimization problem (CNOP), with many design variables and a vast solution space, warrants the use of non-parametric and heuristic optimization algorithms like PSO. Optimization requires minimizing both the weight and cost of these composite plates, simultaneously, which renders the problem multi-objective. Hence VEPSO, a multi-objective variant of the PSO algorithm, is used. Despite the use of such a heuristic, the application problem, being computationally intensive, suffers from long execution times due to sequential computation. Hence, a parallel version of the PSO algorithm for the problem has been developed to run on several nodes of an IBM P720 cluster. The proposed parallel algorithm, using MPI's collective communication directives, establishes a peer-to-peer relationship between the constituent parallel processes, deviating from the more common master-slave approach, in achieving reduction of computation time by factor of up to 10. Finally we show the effectiveness of the proposed parallel algorithm by comparing it with a serial implementation of VEPSO and a parallel implementation of the vector evaluated genetic algorithm (VEGA) for the same design problem. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This study uses precipitation estimates from the Tropical Rainfall Measuring Mission to quantify the spatial and temporal scales of northward propagation of convection over the Indian monsoon region during boreal summer. Propagating modes of convective systems in the intraseasonal time scales such as the Madden-Julian oscillation can interact with the intertropical convergence zone and bring active and break spells of the Indian summer monsoon. Wavelet analysis was used to quantify the spatial extent (scale) and center of these propagating convective bands, as well as the time period associated with different spatial scales. Results presented here suggest that during a good monsoon year the spatial scale of this oscillation is about 30 degrees centered around 10 degrees N. During weak monsoon years, the scale of propagation decreases and the center shifts farther south closer to the equator. A strong linear relationship is obtained between the center/scale of convective wave bands and intensity of monsoon precipitation over Indian land on the interannual time scale. Moreover, the spatial scale and its center during the break monsoon were found to be similar to an overall weak monsoon year. Based on this analysis, a new index is proposed to quantify the spatial scales associated with propagating convective bands. This automated wavelet-based technique developed here can be used to study meridional propagation of convection in a large volume of datasets from observations and model simulations. The information so obtained can be related to the interannual and intraseasonal variation of Indian monsoon precipitation.
Resumo:
In this paper, we address a physics-based closed-form analytical model of flexural phonon-dependent diffusive thermal conductivity (kappa) of suspended rectangular single layer graphene sheet. A quadratic dependence of the out-of-plane phonon frequency, generally called flexural phonons, on the phonon wave vector has been taken into account to analyze the behavior of kappa at lower temperatures. Such a dependence has further been used for the determination of second-order three-phonon Umklapp and isotopic scatterings. We find that these behaviors in our model are best explained through the upper limit of Debye cut-off frequency in the second-order three-phonon Umklapp scattering of the long phonon waves that actually remove the thermal conductivity singularity by contributing a constant scattering rate at low frequencies and note that the out-of-plane Gruneisen parameter for these modes need not be too high. Using this, we clearly demonstrate that. follows a T-1.5 and T-2 law at lower and higher temperatures in the absence of isotopes, respectively. However in their presence, the behavior of kappa sharply deviates from the T-2 law at higher temperatures. The present geometry-dependent model of kappa is found to possess an excellent match with various experimental data over a wide range of temperatures which can be put forward for efficient electro-thermal analyses of encased/supported graphene.
Resumo:
Dodecagonal (12-sided) space vector pulsewidth modulation (PWM) schemes are characterized by the complete absence of (6n +/- 1)th-order harmonics (for odd n) in the phase voltages, within the linear modulation range and beyond, including over-modulation. This paper presents a new topology suitable for the realization of such multilevel inverter schemes for induction motor (IM) drives, by cascading two-level inverters with flying-capacitor-inverter fed floating H-bridge cells. Now, any standard IM may be used to get the dodecagonal operation which hitherto was possible only with open-end winding IM. To minimize the current total harmonic distortion (THD), a strategy for synchronous PWM is also proposed. It is shown that the proposed method is capable of obtaining better THD figures, compared to conventional dodecagonal schemes. The topology and the PWM strategy are validated through analysis and subsequently verified experimentally.
Resumo:
Multilevel inverters with hexagonal and dodecagonal voltage space vector structures have improved harmonic profile compared to two-level inverters. Further improvement in the quality of the waveform is possible using multilevel octadecagonal (18-sided polygon) voltage space vectors. This paper proposes an inverter circuit topology capable of generating multilevel octadecagonal voltage space vectors, by cascading two asymmetric three-level inverters. By the proper selection of dc-link voltages and the resultant switching states for the inverters, voltage space vectors, whose tips lie on three concentric octadecagons, are obtained. The advantages of octadecagonal voltage space vector-based pulsewidth modulation (PWM) techniques are the complete elimination of fifth, seventh, eleventh, and thirteenth harmonics in phase voltages and the extension of linear modulation range. In this paper, a simple PWM timing calculation method is also proposed. Experimental results have been presented in this paper to validate the proposed concept.
Resumo:
We consider the wireless two-way relay channel, in which two-way data transfer takes place between the end nodes with the help of a relay. For the Denoise-And-Forward (DNF) protocol, it was shown by Koike-Akino et al. that adaptively changing the network coding map used at the relay greatly reduces the impact of Multiple Access Interference at the relay. The harmful effect of the deep channel fade conditions can be effectively mitigated by proper choice of these network coding maps at the relay. Alternatively, in this paper we propose a Distributed Space Time Coding (DSTC) scheme, which effectively removes most of the deep fade channel conditions at the transmitting nodes itself without any CSIT and without any need to adaptively change the network coding map used at the relay. It is shown that the deep fades occur when the channel fade coefficient vector falls in a finite number of vector subspaces of, which are referred to as the singular fade subspaces. DSTC design criterion referred to as the singularity minimization criterion under which the number of such vector subspaces are minimized is obtained. Also, a criterion to maximize the coding gain of the DSTC is obtained. Explicit low decoding complexity DSTC designs which satisfy the singularity minimization criterion and maximize the coding gain for QAM and PSK signal sets are provided. Simulation results show that at high Signal to Noise Ratio, the DSTC scheme provides large gains when compared to the conventional Exclusive OR network code and performs better than the adaptive network coding scheme.
Resumo:
This paper presents a multilevel inverter topology suitable for the generation of dodecagonal space vectors instead of hexagonal space vectors as in the case of conventional schemes. This feature eliminates all the 6n +/- 1 (n = odd) harmonics from the phase voltages and currents in the entire modulation range with an increase in the linear modulation range. The topology is realized by flying capacitor-based three-level inverters feeding from two ends of an open-end winding induction motor with asymmetric dc links. The flying capacitor voltages are tightly controlled throughout the modulation range using redundant switching states for any load power factor. A simple and fast carrier-based space-vector pulsewidth modulation (PWM) scheme is also proposed for the topology which utilizes only the sampled amplitudes of the reference wave for the PWM timing computation.
Resumo:
This paper presents an efficient approach to the modeling and classification of vehicles using the magnetic signature of the vehicle. A database was created using the magnetic signature collected over a wide range of vehicles(cars). A vehicle is modeled as an array of magnetic dipoles. The strength of the magnetic dipole and the separation between the magnetic dipoles varies for different vehicles and is dependent on the metallic composition and configuration of the vehicle. Based on the magnetic dipole data model, we present a novel method to extract a feature vector from the magnetic signature. In the classification of vehicles, a linear support vector machine configuration is used to classify the vehicles based on the obtained feature vectors.
Resumo:
Structural Support Vector Machines (SSVMs) have recently gained wide prominence in classifying structured and complex objects like parse-trees, image segments and Part-of-Speech (POS) tags. Typical learning algorithms used in training SSVMs result in model parameters which are vectors residing in a large-dimensional feature space. Such a high-dimensional model parameter vector contains many non-zero components which often lead to slow prediction and storage issues. Hence there is a need for sparse parameter vectors which contain a very small number of non-zero components. L1-regularizer and elastic net regularizer have been traditionally used to get sparse model parameters. Though L1-regularized structural SVMs have been studied in the past, the use of elastic net regularizer for structural SVMs has not been explored yet. In this work, we formulate the elastic net SSVM and propose a sequential alternating proximal algorithm to solve the dual formulation. We compare the proposed method with existing methods for L1-regularized Structural SVMs. Experiments on large-scale benchmark datasets show that the proposed dual elastic net SSVM trained using the sequential alternating proximal algorithm scales well and results in highly sparse model parameters while achieving a comparable generalization performance. Hence the proposed sequential alternating proximal algorithm is a competitive method to achieve sparse model parameters and a comparable generalization performance when elastic net regularized Structural SVMs are used on very large datasets.
Resumo:
This paper presents a fast and accurate relaying technique for a long 765kv UHV transmission line based on support vector machine. For a long EHV/UHV transmission line with large distributed capacitance, a traditional distance relay which uses a lumped parameter model of the transmission line can cause malfunction of the relay. With a frequency of 1kHz, 1/4th cycle of instantaneous values of currents and voltages of all phases at the relying end are fed to Support Vector Machine(SVM). The SVM detects fault type accurately using 3 milliseconds of post-fault data and reduces the fault clearing time which improves the system stability and power transfer capability. The performance of relaying scheme has been checked with a typical 765kV Indian transmission System which is simulated using the Electromagnetic Transients Program(EMTP) developed by authors in which the distributed parameter line model is used. More than 15,000 different short circuit fault cases are simulated by varying fault location, fault impedance, fault incidence angle and fault type to train the SVM for high speed accurate relaying. Simulation studies have shown that the proposed relay provides fast and accurate protection irrespective of fault location, fault impedance, incidence time of fault and fault type. And also the proposed scheme can be used as augmentation for the existing relaying, particularly for Zone-2, Zone-3 protection.
Resumo:
The problem of updating the reliability of instrumented structures based on measured response under random dynamic loading is considered. A solution strategy within the framework of Monte Carlo simulation based dynamic state estimation method and Girsanov's transformation for variance reduction is developed. For linear Gaussian state space models, the solution is developed based on continuous version of the Kalman filter, while, for non-linear and (or) non-Gaussian state space models, bootstrap particle filters are adopted. The controls to implement the Girsanov transformation are developed by solving a constrained non-linear optimization problem. Numerical illustrations include studies on a multi degree of freedom linear system and non-linear systems with geometric and (or) hereditary non-linearities and non-stationary random excitations.