Distributed Space Time Coding for Wireless Two-Way Relaying
Data(s) |
2013
|
---|---|
Resumo |
We consider the wireless two-way relay channel, in which two-way data transfer takes place between the end nodes with the help of a relay. For the Denoise-And-Forward (DNF) protocol, it was shown by Koike-Akino et al. that adaptively changing the network coding map used at the relay greatly reduces the impact of Multiple Access Interference at the relay. The harmful effect of the deep channel fade conditions can be effectively mitigated by proper choice of these network coding maps at the relay. Alternatively, in this paper we propose a Distributed Space Time Coding (DSTC) scheme, which effectively removes most of the deep fade channel conditions at the transmitting nodes itself without any CSIT and without any need to adaptively change the network coding map used at the relay. It is shown that the deep fades occur when the channel fade coefficient vector falls in a finite number of vector subspaces of, which are referred to as the singular fade subspaces. DSTC design criterion referred to as the singularity minimization criterion under which the number of such vector subspaces are minimized is obtained. Also, a criterion to maximize the coding gain of the DSTC is obtained. Explicit low decoding complexity DSTC designs which satisfy the singularity minimization criterion and maximize the coding gain for QAM and PSK signal sets are provided. Simulation results show that at high Signal to Noise Ratio, the DSTC scheme provides large gains when compared to the conventional Exclusive OR network code and performs better than the adaptive network coding scheme. |
Formato |
application/pdf |
Identificador |
http://eprints.iisc.ernet.in/45996/1/IEEE_TRA_SIG_PRO_61-4980_2013%20.pdf Muralidharan, Vijayvaradharaj T and Rajan, Sundar B (2013) Distributed Space Time Coding for Wireless Two-Way Relaying. In: IEEE TRANSACTIONS ON SIGNAL PROCESSING, 61 (4). pp. 980-991. |
Publicador |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
Relação |
http://dx.doi.org/10.1109/TSP.2012.2231677 http://eprints.iisc.ernet.in/45996/ |
Palavras-Chave | #Electrical Communication Engineering |
Tipo |
Journal Article PeerReviewed |