146 resultados para Sound propagation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wavelet spectral finite element (WSFE) model is developed for studying transient dynamics and wave propagation in adhesively bonded composite joints. The adherands are formulated as shear deformable beams using the first order shear deformation theory (FSDT) to obtain accurate results for high frequency wave propagation. Equations of motion governing wave motion in the bonded beams are derived using Hamilton's principle. The adhesive layer is modeled as a line of continuously distributed tension/compression and shear springs. Daubechies compactly supported wavelet scaling functions are used to transform the governing partial differential equations from time domain to frequency domain. The dynamic stiffness matrix is derived under the spectral finite element framework relating the nodal forces and displacements in the transformed frequency domain. Time domain results for wave propagation in a lap joint are validated with conventional finite element simulations using Abaqus. Frequency domain spectrum and dispersion relation results are presented and discussed. The developed WSFE model yields efficient and accurate analysis of wave propagation in adhesively-bonded composite joints. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents the study of wave propagation in quasicrystals. Our interest is in the computation of the wavenumber (k(n)) and group speed (c(g)) of the phonon and phason displacement modes of one, two, and three dimensional quasicrystals. These wave parameter expressions are derived and computed using the elasto-hydrodynamic equations for quasicrystals. For the computation of the wavenumber and group speeds, we use Fourier transform approximation of the phonon and the phason displacement modes. The characteristic equations obtained are a polynomial equation of the wavenumber (k(n)), with frequency as a parameter. The corresponding group speeds (c(g)) for different frequencies are then computed from the wavenumber k(n). The variation of wavenumber and group speeds with frequency is plotted for the 1-D quasicrystal, 2-D decagonal Al-Ni-Co quasicrystals, and 3-D icosahedral Al-Pd-Mn and Zn-Mg-Sc quasicrystals. From the wavenumber and group speeds plots, we obtain the cut-off frequencies for different spatial wavenumber eta(m). The results show that for 1-D, 2-D, and 3-D quasicrystals, the phonon displacement modes are non-dispersive for low values of eta(m) and becomes dispersive for increasing values of eta(m). The cut-off frequencies are not observed for very low values of eta(m), whereas the cut-off frequency starts to appear with increasing eta(m). The group speeds of the phason displacement modes are orders of magnitude lower than that of the phonon displacement modes, showing that the phason modes do not propagate, and they are essentially the diffusive modes. The group speeds of the phason modes are also not influenced by eta(m). The group speeds for the 2-D quasicrystal at 35 kHz is also simulated numerically using Galerkin spectral finite element methods in frequency domain and is compared with the results obtained using wave propagation analysis. The effect of the phonon and phason elastic constants on the group speeds is studied using 3-D icosahedral Al-Pd-Mn and Zn-Mg-Sc quasicrystals. It is also shown that the phason elastic constants and the coupling coefficient do not affect the group speeds of the phonon displacement modes. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a complete bipartite graph with vertex sets of cardinalities n and n', assign random weights from exponential distribution with mean 1, independently to each edge. We show that, as n -> infinity, with n' = n/alpha] for any fixed alpha > 1, the minimum weight of many-to-one matchings converges to a constant (depending on alpha). Many-to-one matching arises as an optimization step in an algorithm for genome sequencing and as a measure of distance between finite sets. We prove that a belief propagation (BP) algorithm converges asymptotically to the optimal solution. We use the objective method of Aldous to prove our results. We build on previous works on minimum weight matching and minimum weight edge cover problems to extend the objective method and to further the applicability of belief propagation to random combinatorial optimization problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spectral elements are found to be extremely resourceful to study the wave propagation characteristics of structures at high frequencies. Most of the aerospace structures use honeycomb sandwich constructions. The existing spectral elements use single layer theories for a sandwich construction wherein the two face sheets vibrate together and this model is sufficient for low frequency excitations. At high frequencies, the two face sheets vibrate independently. The Extended Higher order SAndwich Plate theory (EHSaPT) is suitable for representing the independent motion of the face sheets. A 1D spectral element based on EHSaPT is developed in this work. The wave number and the wave speed characteristics are obtained using the developed spectral element. It is shown that the developed spectral element is capable of representing independent wave motions of the face sheets. The propagation speeds of a high frequency modulated pulse in the face sheets and the core of a honeycomb sandwich are demonstrated. Responses of a typical honeycomb sandwich beam to high frequency shock loads are obtained using the developed spectral element and the response match very well with the finite element results. It is shown that the developed spectral element is able to represent the flexibility of the core resulting into independent wave motions in the face sheets, for which a finite element method needs huge degrees of freedom. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the correlation between the band propagation property and the nature and amplitude of serrations in the Portevin-Le Chatelier effect within the framework of the Ananthakrishna model. Several significant results emerge. First, we find that spatial and temporal correlations continuously increase with strain rate from type C to type A bands. Consequently, the nature of the bands also changes continuously from type C to A bands, and so do the changes in the associated serrations. Second, even the smallest extent of propagation induces small amplitude serrations. The spatial extent of band propagation is directly correlated with the duration of small amplitude serrations, a result that is consistent with recent experiments. This correspondence allows one to estimate the spatial extent of band propagation by just measuring the temporal stretch of small amplitude serrations. Therefore, this should be of practical value when only stress versus strain is recorded. Third, the average stress drop magnitude of the small amplitude serrations induced by the propagating bands remains small and nearly constant with strain rate. As a consequence, the fully propagating type A bands are in a state of criticality. We rationalize the increasing levels of spatial and temporal correlations found with increasing strain rates. Lastly, the model also predicts several band morphologies seen in experiments including the Luders-like propagating band. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The clever designs of natural transducers are a great source of inspiration for man-made systems. At small length scales, there are many transducers in nature that we are now beginning to understand and learn from. Here, we present an example of such a transducer that is used by field crickets to produce their characteristic song. This transducer uses two distinct components-a file of discrete teeth and a plectrum that engages intermittently to produce a series of impulses forming the loading, and an approximately triangular membrane, called the harp, that acts as a resonator and vibrates in response to the impulse-train loading. The file-and-plectrum act as a frequency multiplier taking the low wing beat frequency as the input and converting it into an impulse-train of sufficiently high frequency close to the resonant frequency of the harp. The forced vibration response results in beats producing the characteristic sound of the cricket song. With careful measurements of the harp geometry and experimental measurements of its mechanical properties (Young's modulus determined from nanoindentation tests), we construct a finite element (FE) model of the harp and carry out modal analysis to determine its natural frequency. We fine tune the model with appropriate elastic boundary conditions to match the natural frequency of the harp of a particular species-Gryllus bimaculatus. We model impulsive loading based on a loading scheme reported in literature and predict the transient response of the harp. We show that the harp indeed produces beats and its frequency content matches closely that of the recorded song. Subsequently, we use our FE model to show that the natural design is quite robust to perturbations in the file. The characteristic song frequency produced is unaffected by variations in the spacing of file-teeth and even by larger gaps. Based on the understanding of how this natural transducer works, one can design and fabricate efficient microscale acoustic devices such as microelectromechanical systems (MEMS) loudspeakers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

UHV power transmission lines have high probability of shielding failure due to their higher height, larger exposure area and high operating voltage. Lightning upward leader inception and propagation is an integral part of lightning shielding failure analysis and need to be studied in detail. In this paper a model for lightning attachment has been proposed based on the present knowledge of lightning physics. Leader inception is modeled based on the corona charge present near the conductor region and the propagation model is based on the correlation between the lightning induced voltage on the conductor and the drop along the upward leader channel. The inception model developed is compared with previous inception models and the results obtained using the present and previous models are comparable. Lightning striking distances (final jump) for various return stroke current were computed for different conductor heights. The computed striking distance values showed good correlation with the values calculated using the equation proposed by the IEEE working group for the applicable conductor heights of up to 8 m. The model is applied to a 1200 kV AC power transmission line and inception of the upward leader is analyzed for this configuration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crack initiation and growth mechanisms in an 2D graphene lattice structure are studied based on molecular dynamics simulations. Crack growth in an initial edge crack model in the arm-chair and the zig-zag lattice configurations of graphene are considered. Influence of the time steps on the post yielding behaviour of graphene is studied. Based on the results, a time step of 0.1 fs is recommended for consistent and accurate simulation of crack propagation. Effect of temperature on the crack propagation in graphene is also studied, considering adiabatic and isothermal conditions. Total energy and stress fields are analyzed. A systematic study of the bond stretching and bond reorientation phenomena is performed, which shows that the crack propagates after significant bond elongation and rotation in graphene. Variation of the crack speed with the change in crack length is estimated. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonlinear acoustic wave propagation is considered in an infinite orthotropic thin circular cylindrical waveguide. The modes are non-planar having small but finite amplitude. The fluid is assumed to be ideal and inviscid with no mean flow. The cylindrical waveguide is modeled using the Donnell's nonlinear theory for thin cylindrical shells. The approximate solutions for the acoustic velocity potential are found using the method of multiple scales (MMS) in space and time. The calculations are presented up to the third order of the small parameter. It is found that at some frequencies the amplitude modulation is governed by the Nonlinear Schrodinger Equation (NLSE). The first objective is to study the nonlinear term in the NLSE, as the sign of the nonlinear term determines the stability of the amplitude modulation. On the other hand, at other specific frequencies, interactions occur between the primary wave and its higher harmonics. Here, the objective is to identify the frequencies of the higher harmonic interactions. Lastly, the linear terms in the NLSE obtained using the MMS calculations are validated. All three objectives are met using an asymptotic analysis of the dispersion equation. (C) 2015 Acoustical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conceptual Design Phase is the most critical for design decisions and their impact on the Environment. It is also a phase of many `unknowns' making it flexible and allowing exploration of many solutions. Thus, it is a challenge to determine the most Environmentally-benign Solution or Concept to be translated in to a `good' product. The SAPPhIRE Model captures the various levels of abstractions present in Conceptual Design by Outcomes and defines a Solution-variant as a set of verifiable and quantifiable Outcomes. The Causality explains the propagation of Environmental Impact across Outcomes at varying levels of abstraction, suggesting that the Environmental Impact of an Outcome at a certain level can be represented as a collation of Environmental Impact information of all the Outcomes at each of its subsequent lower levels of abstraction. Thus a ball-park impact value can be associated with the higher-levels of abstraction, thereby supporting design decisions taken earlier on in Conceptual Design directing towards Environmentally-benign Design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A finite flexible perforated panel set in a differently perforated rigid baffle is considered. The radiation efficiency from such a panel is derived using a 2-D wavenumber domain formulation. This generalization is later used to represent a more practical case of a perforated panel fixed in an unperforated baffle. The perforations are in the form of an array of uniformly distributed circular holes. A complex impedance model for the holes available in the literature is used. An averaged fluid particle velocity is derived using the continuity equation and the surface pressure is derived using an appropriate momentum equation. The discontinuity in the perforate impedance (due to different hole dimensions or perforation ratio) at the panel-baffle interface is carefully taken into account. It is found that there exists a `coupling' of different wavenumbers of the spatially mean fluid particle velocity field. The change in the resonance frequencies and the modeshapes of the panel due to the perforations is taken into account using the Receptance method. Analytical expressions for the radiated power and radiation efficiency are derived in an integral form and numerical results are presented. Several comparisons are made to understand the radiation efficiency curves. Since both the resistive and reactive components of the hole impedance are taken into account, the model is directly applicable to micro-perforated panels also. (C) 2016 Elsevier Ltd. All rights reserved.