215 resultados para Porous Medium
Resumo:
Three-dimensional effects are a primary source of discrepancy between the measured values of automotive muffler performance and those predicted by the plane wave theory at higher frequencies. The basically exact method of (truncated) eigenfunction expansions for simple expansion chambers involves very complicated algebra, and the numerical finite element method requires large computation time and core storage. A simple numerical method is presented in this paper. It makes use of compatibility conditions for acoustic pressure and particle velocity at a number of equally spaced points in the planes of the junctions (or area discontinuities) to generate the required number of algebraic equations for evaluation of the relative amplitudes of the various modes (eigenfunctions), the total number of which is proportional to the area ratio. The method is demonstrated for evaluation of the four-pole parameters of rigid-walled, simple expansion chambers of rectangular as well as circular cross-section for the case of a stationary medium. Computed values of transmission loss are compared with those computed by means of the plane wave theory, in order to highlight the onset (cutting-on) of various higher order modes and the effect thereof on transmission loss of the muffler. These are also compared with predictions of the finite element methods (FEM) and the exact methods involving eigenfunction expansions, in order to demonstrate the accuracy of the simple method presented here.
Resumo:
In terabit-density magnetic recording, several bits of data can be replaced by the values of their neighbors in the storage medium. As a result, errors in the medium are dependent on each other and also on the data written. We consider a simple 1-D combinatorial model of this medium. In our model, we assume a setting where binary data is sequentially written on the medium and a bit can erroneously change to the immediately preceding value. We derive several properties of codes that correct this type of errors, focusing on bounds on their cardinality. We also define a probabilistic finite-state channel model of the storage medium, and derive lower and upper estimates of its capacity. A lower bound is derived by evaluating the symmetric capacity of the channel, i.e., the maximum transmission rate under the assumption of the uniform input distribution of the channel. An upper bound is found by showing that the original channel is a stochastic degradation of another, related channel model whose capacity we can compute explicitly.
Resumo:
Electron paramagnetic resonance studies under ambient conditions of boron‐doped porous silicon show anisotropic Zeeman (g) and hyperfine (A) tensors, signaling localization of the charge carriers due to quantum confinement.
Resumo:
This research is focused on understanding the role of microstructural variables and processing parameters in obtaining optimised dual phase structures in medium carbon low alloy steels. Tempered Martensite structures produced at 300, 500, and 650 degrees C, were cold rolled to varied degrees ranging from 20 to 80% deformation. Intercritical annealing was then performed at 740, 760, and 780 degrees C for various time duration ranging from 60 seconds to 60 minutes before quenching in water. The transformation behaviour was studied with the aid of optical microscopy and hardness curves. From the results, it is observed that microstructural condition, deformation, and intercritical temperatures influenced the chronological order of the competing stress relaxation and decomposition phase reactions which interfered with the rate of the expected alpha -> gamma transformation. The three unique transformation trends observed are systematically analyzed. It was also observed that the 300 and 500 degrees C tempered initial microstructures were unsuitable for the production of dual structures with optimized strength characteristics.
Resumo:
Abstract | The importance of well-defined inorganic porous nanostructured materials in the context of biotechnological applications such as drug delivery and biomolecular sensing is reviewed here in detail. Under optimized conditions, the confinement of “bio”-relevant molecules such as pharmaceutical drugs, enzymes or proteins inside such inorganic nanostructures may be remarkably beneficial leading to enhanced molecular stability, activity and performance. From the point of view of basic research, molecular confinement inside nanostructures poses several formidable and intriguing problems of statistical mechanics at the mesoscopic scale. The theoretical comprehension of such non-trivial issues will not only aid in the interpretation of observed phenomena but also help in designing better inorganic nanostructured materials for biotechnological applications.
Resumo:
Arteries are heterogeneous, composite structures that undergo large cyclic deformations during blood transport. Presence, build-up and consequent rupture of blockages in blood vessels, called atherosclerotic plaques, lead to disruption in the blood flow that can eventually be fatal. Abnormal lipid profile and hypertension are the main risk factors for plaque progression. Treatments span from pharmacological methods, to minimally invasive balloon angioplasty and stent procedures, and finally to surgical alternatives. There is a need to understand arterial disease progression and devise methods to detect, control, treat and manage arterial disease through early intervention. Local delivery through drug eluting stents also provide an attractive option for maintaining vessel integrity and restoring blood flow while releasing controlled amount of drug to reduce and alleviate symptoms. Development of drug eluting stents is hence interesting albeit challenging because it requires an integration of knowledge of mechanical properties with material transport of drug through the arterial wall to produce a desired biochemical effect. Although experimental models are useful in studying such complex multivariate phenomena, numerical models of mass transport in the vessel have proved immensely useful to understand and delineate complex interactions between chemical species, physical parameters and biological variables. The goals of this review are to summarize literature based on studies of mass transport involving low density lipoproteins in the arterial wall. We also discuss numerical models of drug elution from stents in layered and porous arterial walls that provide a unique platform that can be exploited for the design of novel drug eluting stents.
Resumo:
The problem of generation of surface water waves at tile interface of two immiscible liquids by a onesided porous wave maker is studied in both the cases of water of infinite as well as finite depth by suitable application of the generalisation of Havelock's expansion theorem. The solution of the the problem of reflection of water waves due to a fixed porous wall is derived as a particular case.
Resumo:
Hydraulic conductivity of fine-grained soils has assumed greater importance in waste disposal facilities. It is necessary to understand better the factors controlling hydraulic conductivity of fine-grained soils which are used as liners in waste disposal facilities. Hydraulic Conductivity study with ten soils with two fluids having extreme dielectric constants(epsilon) namely water and CCl4 has shown that intrinsic permeability (K) increases drastically with decrease in epsilon. These changes are attributed to the significant reduction in the thickness of diffuse double layer which in turn mainly dependent on the epsilon of the permeant. Hydraulic Conductivity with water of each pair of soils having nearly same liquid limit but different plasticity properties is found to be vastly different, but found to correlate well with shrinkage index, defined as difference between the liquid and the shrinkage limits. Also the ratio Kccl(4)/K-w is found to significantly increase with the increase in the shrinkage index.
Resumo:
In this letter, we investigate the circular differential deflection of a light beam refracted at the interface of an optically active medium. We show that the difference between the angles of deviation of the two circularly polarized components of the transmitted beam is enhanced manyfold near total internal reflection, which suggests a simple way of increasing the limit of detection of chiro-optical measurements. (C) 2012 Optical Society of America
Resumo:
By employing a thermal oxidation strategy, we have grown large area porous Cu2O from Cu foil. CuO nanorods are grown by heating Cu which were in turn heated in an argon atmosphere to obtain a porous Cu2O layer. The porous Cu2O layer is superhydrophobic and exhibits red luminescence. In contrast, Cu2O obtained by direct heating, is hydrophobic and exhibits yellow luminescence. Two more luminescence bands are observed in addition to red and yellow luminescence, corresponding to the recombination of free and bound excitons. Over all, the porous Cu2O obtained from Cu via CuO nanorods, can serve as a superhydrophobic luminescence/phosphor material.
Resumo:
Chemical signaling is a prominent mode of male-female communication among elephants, especially during their sexually active periods. Studies on the Asian elephant in zoos have shown the significance of a urinary pheromone (Z7-12:Ac) in conveying the reproductive status of a female toward the opposite sex. We investigated the additional possibility of an inter-sexual chemical signal being conveyed through dung. Sixteen semi-captive adult male elephants were presented with dung samples of three female elephants in different reproductive phases. Each male was tested in 3 separate trials, within an interval of 1-3 days. The trials followed a double-blind pattern as the male and female elephants used in the trials were strangers, and the observer was not aware of the reproductive status of females during the period of bioassays. Males responded preferentially (P < 0.005), in terms of higher frequency of sniff, check and place behavior toward the dung of females close to pre-ovulatory period (follicular-phase) as compared to those in post-ovulatory period (luteal-phase). The response toward the follicular phase samples declined over repeated trials though was still significantly higher than the corresponding response toward the non-ovulatory phase in each of the trials performed. This is the first study to show that male Asian elephants were able to distinguish the reproductive phase of the female by possibly detecting a pre-ovulatory pheromone released in dung. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We demonstrate the phase fluctuation introduced by oscillation of scattering centers in the focal volume of an ultrasound transducer in an optical tomography experiment has a nonzero mean. The conditions to be met for the above are: (i) the frequency of the ultrasound should be in the vicinity of the most dominant natural frequency of vibration of the ultrasound focal volume, (ii) the corresponding acoustic wavelength should be much larger than l(n)*, a modified transport mean-free-path applicable for phase decorrelation and (iii) the focal volume of the ultrasound transducer should not be larger than 4 - 5 times (l(n)*)(3). We demonstrate through simulations that as the ratio of the ultrasound focal volume to (l(n)*)(3) increases, the average of the phase fluctuation decreases and becomes zero when the focal volume becomes greater than around 4(l(n)*)(3); and through simulations and experiments that as the acoustic frequency increases from 100 Hz to 1 MHz, the average phase decreases to zero. Through experiments done in chicken breast we show that the average phase increases from around 110 degrees to 130 degrees when the background medium is changed from water to glycerol, indicating that the average of the phase fluctuation can be used to sense changes in refractive index deep within tissue.
Resumo:
We report a simple, reliable and one-step method of synthesizing ZnO porous structures at room temperature by anodization of zinc (Zn) sheet with water as an electrolyte and graphite as a counter electrode. We observed that the de-ionized (DI) water used in the experiment is slightly acidic (pH=5.8), which is due to the dissolution of carbon dioxide from the atmosphere forming carbonic acid. Porous ZnO is characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and photoluminescence (PL) studies. The current-transient measurement is carried out using a Gamry Instruments Reference 3000 and the thickness of the deposited films is measured using a Dektak surface profilometer. The PL, Raman and X-ray photoelectron spectroscopy are used to confirm the presence of ZnO phase. We have demonstrated that the hybrid structures of ZnO and poly (3,4-ethylenedioxythiophene):poly (styrene sulfonate) (PEDOT:PSS) exhibit good rectifying characteristics. The evaluated barrier height and the ideality factor are 0.45 eV and 3.6, respectively.
Resumo:
Electrochemical deposition of Pd on conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) coated carbon paper electrode results in the formation of a stable dendritic film of Pd. In the absence of the PEDOT under-layer, Pd deposition is smooth and non-dendritic. Both Pd-PEDOT/C and Pd/C electrodes are studied for electrooxidation of 1,2-propanediol (PD) in an alkaline electrolyte. Owing to enhanced surface area and surface defects on dendritic Pd, the Pd-PEDOT/C electrode exhibits greater catalytic activity than the Pd/C electrode. Cyclic voltammetry studies suggest that peak current density increases with an increase in concentrations of PD and NaOH in the electrolyte. Repetitive cyclic voltammetry and amperometry studies indicate that Pd-PEDOT/C electrode possesses a high electrochemical stability with greater catalytic activity than Pd/C electrode toward electrooxidation of PD. (C) 2012 Elsevier Ltd. All rights reserved.