241 resultados para Oscillators, Audio-frequency
Resumo:
A current error space phasor based simple hysteresis controller is proposed in this paper to control the switching frequency variation in two-level pulsewidth-modulation (PWM) inverter-fed induction motor (IM) drives. A parabolic boundary for the current error space phasor is suggested for the first time to obtain the switching frequency spectrum for output voltage with hysteresis controller similar to the constant switching frequency voltage-controlled space vector PWM-based IM drive. A novel concept of online variation of this parabolic boundary, which depends on the operating speed of motor, is presented. A generalized technique that determines the set of unique parabolic boundaries for a two-level inverter feeding any given induction motor is described. The sector change logic is self-adaptive and is capable of taking the drive up to the six-step mode if needed. Steady-state and transient performance of proposed controller is experimentally verified on a 3.7-kW IM drive in the entire speed range. Close resemblance of the simulation and experimental results is shown.
Resumo:
Multicode operation in space-time block coded (STBC) multiple input multiple output (MIMO) systems can provide additional degrees of freedom in code domain to achieve high data rates. In such multicode STBC systems, the receiver experiences code domain interference (CDI) in frequency selective fading. In this paper, we propose a linear parallel interference cancellation (LPIC) approach to cancel the CDI in multicode STBC signals in frequency selective fading. The proposed detector first performs LPIC followed by STBC decoding. We present an SINK for the proposed detector. We evaluate the bit error rate (BER) performance of the system, and show that the proposed detector effectively cancels the CDI and achieves improved error performance. Our BER results further illustrate how the combined effect of interference cancellation, transmit diversity, and RAKE diversity affects the performance of the system.
Resumo:
Communication applications are usually delay restricted, especially for the instance of musicians playing over the Internet. This requires a one-way delay of maximum 25 msec and also a high audio quality is desired at feasible bit rates. The ultra low delay (ULD) audio coding structure is well suited to this application and we investigate further the application of multistage vector quantization (MSVQ) to reach a bit rate range below 64 Kb/s, in a scalable manner. Results at 32 Kb/s and 64 Kb/s show that the trained codebook MSVQ performs best, better than KLT normalization followed by a simulated Gaussian MSVQ or simulated Gaussian MSVQ alone. The results also show that there is only a weak dependence on the training data, and that we indeed converge to the perceptual quality of our previous ULD coder at 64 Kb/s.
Resumo:
We propose a parametric stereo coding analysis and synthesis directly in the MDCT domain using an analysis by synthesis parameter estimation. The stereo signal is represented by an equalized sum signal and spatialization parameters. Equalized sum signal and the spatialization parameters are obtained by sub-band analysis in the MDCT domain. The de-correlated signal required for the stereo synthesis is also generated in the MDCT domain. Subjective evaluation test using MUSHRA shows that the synthesized stereo signal is perceptually satisfactory and comparable to the state of the art parametric coders.
Resumo:
A low-power frequency multiplication technique, developed for ZigBee (IEEE 802.15.4) like applications is presented. We have provided an estimate for the power consumption for a given output voltage swing using our technique. The advantages and disadvantages which determine the application areas of the technique are discussed. The issues related to design, layout and process variation are also addressed. Finally, a design is presented for operation in 2.405-2.485-GHz band of ZigBee receiver. SpectreRF simulations show 30% improvement in efficiency for our circuit with regard to conversion of DC bias current to output amplitude, against a LC-VCO. To establish the low-power credentials, we have compared our circuit with an existing technique; our circuit performs better with just 1/3 of total current from supply, and uses one inductor as against three in the latter case. A test chip was implemented in UMC 0.13-mum RF process with spiral on-chip inductors and MIM (metal-insulator-metal) capacitor option.
Resumo:
Clustering techniques are used in regional flood frequency analysis (RFFA) to partition watersheds into natural groups or regions with similar hydrologic responses. The linear Kohonen's self‐organizing feature map (SOFM) has been applied as a clustering technique for RFFA in several recent studies. However, it is seldom possible to interpret clusters from the output of an SOFM, irrespective of its size and dimensionality. In this study, we demonstrate that SOFMs may, however, serve as a useful precursor to clustering algorithms. We present a two‐level. SOFM‐based clustering approach to form regions for FFA. In the first level, the SOFM is used to form a two‐dimensional feature map. In the second level, the output nodes of SOFM are clustered using Fuzzy c‐means algorithm to form regions. The optimal number of regions is based on fuzzy cluster validation measures. Effectiveness of the proposed approach in forming homogeneous regions for FFA is illustrated through application to data from watersheds in Indiana, USA. Results show that the performance of the proposed approach to form regions is better than that based on classical SOFM.
Resumo:
In this paper, we consider the problem of designing minimum mean squared error (MMSE) filterbank precoder and equalizer for multiple input multiple output (MIMO) frequency selective channels. We derive the conditions to be satisfied by the optimal precoder-equalizer pair, and provide an iterative algorithm for solving them. The optimal design is very general, in that it is not constrained by channel dimensions, channel order, channel rank, or the input constellation. We also discuss some pertinent difierences between the filterbank approach and the space-time approach to the design of optimal precoder and equalizer. Simulation results demonstrate that the proposed design performs better than the space-time systems while supporting a higher data rate.
Resumo:
We address the problem of estimating the fundamental frequency of voiced speech. We present a novel solution motivated by the importance of amplitude modulation in sound processing and speech perception. The new algorithm is based on a cumulative spectrum computed from the temporal envelope of various subbands. We provide theoretical analysis to derive the new pitch estimator based on the temporal envelope of the bandpass speech signal. We report extensive experimental performance for synthetic as well as natural vowels for both realworld noisy and noise-free data. Experimental results show that the new technique performs accurate pitch estimation and is robust to noise. We also show that the technique is superior to the autocorrelation technique for pitch estimation.
Resumo:
We propose and demonstrate a technique for electrical detection of polarized spins in semiconductors in zero applied magnetic fields. Spin polarization is generated by optical injection using circularly polarized light which is modulated rapidly using an electro-optic cell. The modulated spin polarization generates a weak time-varying magnetic field which is detected by a sensitive radio-frequency coil. Using a calibrated pickup coil and amplification electronics, clear signals were obtained for bulk GaAs and Ge samples from which an optical spin orientation efficiency of 4.8% could be determined for Ge at 1342 nm excitation wavelength. In the presence of a small external magnetic field, the signal decayed according to the Hanle effect, from which a spin lifetime of 4.6 +/- 1.0 ns for electrons in bulk Ge at 127 K was extracted.