174 resultados para Modular product architecture
Resumo:
We consider the problem of devising incentive strategies for viral marketing of a product. In particular, we assume that the seller can influence penetration of the product by offering two incentive programs: a) direct incentives to potential buyers (influence) and b) referral rewards for customers who influence potential buyers to make the purchase (exploit connections). The problem is to determine the optimal timing of these programs over a finite time horizon. In contrast to algorithmic perspective popular in the literature, we take a mean-field approach and formulate the problem as a continuous-time deterministic optimal control problem. We show that the optimal strategy for the seller has a simple structure and can take both forms, namely, influence-and-exploit and exploit-and-influence. We also show that in some cases it may optimal for the seller to deploy incentive programs mostly for low degree nodes. We support our theoretical results through numerical studies and provide practical insights by analyzing various scenarios.
Resumo:
We consider proper holomorphic mappings of equidimensional pseudoconvex domains in complex Euclidean space, where both source and target can be represented as Cartesian products of smoothly bounded domains. It is shown that such mappings extend smoothly up to the closures of the domains, provided each factor of the source satisfies Condition R. It also shown that the number of smoothly bounded factors in the source and target must be the same, and the proper holomorphic map splits as a product of proper mappings between the factor domains. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Gene expression is the most fundamental biological process, which is essential for phenotypic variation. It is regulated by various external (environment and evolution) and internal (genetic) factors. The level of gene expression depends on promoter architecture, along with other external factors. Presence of sequence motifs, such as transcription factor binding sites (TFBSs) and TATA-box, or DNA methylation in vertebrates has been implicated in the regulation of expression of some genes in eukaryotes, but a large number of genes lack these sequences. On the other hand, several experimental and computational studies have shown that promoter sequences possess some special structural properties, such as low stability, less bendability, low nucleosome occupancy, and more curvature, which are prevalent across all organisms. These structural features may play role in transcription initiation and regulation of gene expression. We have studied the relationship between the structural features of promoter DNA, promoter directionality and gene expression variability in S. cerevisiae. This relationship has been analyzed for seven different measures of gene expression variability, along with two different regulatory effect measures. We find that a few of the variability measures of gene expression are linked to DNA structural properties, nucleosome occupancy, TATA-box presence, and bidirectionality of promoter regions. Interestingly, gene responsiveness is most intimately correlated with DNA structural features and promoter architecture.
Resumo:
In the product conceptualization phase of design, sketches are often used for exploration of diverse behaviour patterns of the components to achieve the required functionality. This paper presents a method to animate the sketch produced using a tablet interface to aid verification of the desired behaviour. A sketch is a spatial organization of strokes whose perceptual organization helps one to visually interpret its components and their interconnections. A Gestalt based segmentation followed by interactive grouping and articulation, presented in this paper, enables one to use a mechanism simulation framework to animate the sketch in a “pick and drag” mode to visualize different configurations of the product and gain insight into the product’s behaviour.
Resumo:
Growing consumer expectations continue to fuel further advancements in vehicle ride comfort analysis including development of a comprehensive tool capable of aiding the understanding of ride comfort. To date, most of the work on biodynamic responses of human body in the context of ride comfort mainly concentrates on driver or a designated occupant and therefore leaves the scope for further work on ride comfort analysis covering a larger number of occupants with detailed modeling of their body segments. In the present study, governing equations of a 13-DOF (degrees-of-freedom) lumped parameter model (LPM) of a full car with seats (7-DOF without seats) and a 7-DOF occupant model, a linear version of an earlier non-linear occupant model, are presented. One or more occupant models can be coupled with the vehicle model resulting into a maximum of 48-DOF LPM for a car with five occupants. These multi-occupant models can be formulated in a modular manner and solved efficiently using MATLAB/SIMULINK for a given transient road input. The vehicle model and the occupant model are independently verified by favorably comparing computed dynamic responses with published data. A number of cases with different dispositions of occupants in a small car are analyzed using the current modular approach thereby underscoring its potential for efficient ride quality assessment and design of suspension systems.
Resumo:
An enantioselective synthesis of the macrolactone core of natural product Sch725674 was accomplished from furfural. Key reactions in assembly of the macrolactone are the use of furan as a but-2-ene-dione equivalent and ring closing metathesis. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a Radix-4(3) based FFT architecture suitable for OFDM based WLAN applications. The radix-4(3) parallel unrolled architecture presented here, uses a radix-4 butterfly unit which takes all four inputs in parallel and can selectively produce one out of the four outputs. A 64 point FFT processor based on the proposed architecture has been implemented in UMC 130nm 1P8M CMOS process with a maximum clock frequency of 100 MHz and area of 0.83mm(2). The proposed processor provides a throughput of four times the clock rate and can finish one 64 point FFT computation in 16 clock cycles. For IEEE 802.11a/g WLAN, the processor needs to be operated at a clock rate of 5 MHz with a power consumption of 2.27 mW which is 27% less than the previously reported low power implementations.
Resumo:
In this paper we propose a fully parallel 64K point radix-4(4) FFT processor. The radix-4(4) parallel unrolled architecture uses a novel radix-4 butterfly unit which takes all four inputs in parallel and can selectively produce one out of the four outputs. The radix-4(4) block can take all 256 inputs in parallel and can use the select control signals to generate one out of the 256 outputs. The resultant 64K point FFT processor shows significant reduction in intermediate memory but with increased hardware complexity. Compared to the state-of-art implementation 5], our architecture shows reduced latency with comparable throughput and area. The 64K point FFT architecture was synthesized using a 130nm CMOS technology which resulted in a throughput of 1.4 GSPS and latency of 47.7 mu s with a maximum clock frequency of 350MHz. When compared to 5], the latency is reduced by 303 mu s with 50.8% reduction in area.
Resumo:
We prove a result on the structure of finite proper holomorphic mappings between complex manifolds that are products of hyperbolic Riemann surfaces. While an important special case of our result follows from the ideas developed by Remmert and Stein, the proof of the full result relies on the interplay of the latter ideas and a finiteness theorem for Riemann surfaces.
Resumo:
This paper describes the use of liaison to better integrate product model and assembly process model so as to enable sharing of design and assembly process information in a common integrated form and reason about them. Liaison can be viewed as a set, usually a pair, of features in proximity with which process information can be associated. A liaison is defined as a set of geometric entities on the parts being assembled and relations between these geometric entities. Liaisons have been defined for riveting, welding, bolt fastening, screw fastening, adhesive bonding (gluing) and blind fastening processes. The liaison captures process specific information through attributes associated with it. The attributes are associated with process details at varying levels of abstraction. A data structure for liaison has been developed to cluster the attributes of the liaison based on the level of abstraction. As information about the liaisons is not explicitly available in either the part model or the assembly model, algorithms have been developed for extracting liaisons from the assembly model. The use of liaison is proposed to enable both the construction of process model as the product model is fleshed out, as well as maintaining integrity of both product and process models as the inevitable changes happen to both design and the manufacturing environment during the product lifecycle. Results from aerospace and automotive domains have been provided to illustrate and validate the use of liaisons. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Sign changes of Fourier coefficients of various modular forms have been studied. In this paper, we analyze some sign change properties of Fourier coefficients of Hilbert modular forms, under the assumption that all the coefficients are real. The quantitative results on the number of sign changes in short intervals are also discussed. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
The current manuscript describes conformational analysis of 15-membered cyclic tetrapeptides (CTPs), with alpha 3 delta architecture, containing sugar amino acids (SAA) having variation in the stereocenter at C5 carbon. Conformational analyses of both the series, in protected and deprotected forms, were carried out in DMSO-d(6) using various NMR techniques, supported by restrained MD calculations. It was intriguing to notice that the alpha 3 delta macrocycles got stabilized by both 10-membered beta-turn as well as a seven-membered gamma-turn, fused within the same macrocycle. The presence of fused sub-structures within a 15-membered macrocycle is rare to see. Also, the stereocenter variation at C5 did not affect the fused turn structures and exhibited similar conformations in both the series. The design becomes highly advantageous as fused reverse turn structures are occurring in the cyclic structure with minimalistic size macrocycle and this can be applied to develop suitable pharmacophores in the drug development process. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The highly modular nature of protein kinases generates diverse functional roles mediated by evolutionary events such as domain recombination, insertion and deletion of domains. Usually domain architecture of a kinase is related to the subfamily to which the kinase catalytic domain belongs. However outlier kinases with unusual domain architectures serve in the expansion of the functional space of the protein kinase family. For example, Src kinases are made-up of SH2 and SH3 domains in addition to the kinase catalytic domain. A kinase which lacks these two domains but retains sequence characteristics within the kinase catalytic domain is an outlier that is likely to have modes of regulation different from classical src kinases. This study defines two types of outlier kinases: hybrids and rogues depending on the nature of domain recombination. Hybrid kinases are those where the catalytic kinase domain belongs to a kinase subfamily but the domain architecture is typical of another kinase subfamily. Rogue kinases are those with kinase catalytic domain characteristic of a kinase subfamily but the domain architecture is typical of neither that subfamily nor any other kinase subfamily. This report provides a consolidated set of such hybrid and rogue kinases gleaned from six eukaryotic genomes-S. cerevisiae, D. melanogaster, C. elegans, M. musculus, T. rubripes and H. sapiens-and discusses their functions. The presence of such kinases necessitates a revisiting of the classification scheme of the protein kinase family using full length sequences apart from classical classification using solely the sequences of kinase catalytic domains. The study of these kinases provides a good insight in engineering signalling pathways for a desired output. Lastly, identification of hybrids and rogues in pathogenic protozoa such as P. falciparum sheds light on possible strategies in host-pathogen interactions.
Resumo:
In this paper, we consider the security of exact-repair regenerating codes operating at the minimum-storage-regenerating (MSR) point. The security requirement (introduced in Shah et. al.) is that no information about the stored data file must be leaked in the presence of an eavesdropper who has access to the contents of l(1) nodes as well as all the repair traffic entering a second disjoint set of l(2) nodes. We derive an upper bound on the size of a data file that can be securely stored that holds whenever l(2) <= d - k +1. This upper bound proves the optimality of the product-matrix-based construction of secure MSR regenerating codes by Shah et. al.
Resumo:
We investigate into the limitations of the sum-product algorithm in the probability domain over graphs with isolated short cycles. By considering the statistical dependency of messages passed in a cycle of length 4, we modify the update equations for the beliefs at the variable and check nodes. We highlight an approximate log domain algebra for the modified variable node update to ensure numerical stability. At higher signal-to-noise ratios (SNR), the performance of decoding over graphs with isolated short cycles using the modified algorithm is improved compared to the original message passing algorithm (MPA).