158 resultados para Mass extinction
Resumo:
In this paper we study the effective electron mass (EEM) in Nano wires (NWs) of nonlinear optical materials on the basis of newly formulated electron dispersion relation by considering all types of anisotropies of the energy band constants within the framework of k . p formalism. The results for NWs of III-V, ternary and quaternary semiconductors form special cases of our generalized analysis. We have also investigated the EEM in NWs of Bi, IV-VI, stressed Kane type materials, Ge, GaSb and Bi2Te3 by formulating the appropriate 1D dispersion law in each case by considering the influence of energy band constants in the respective cases. It has been found that the 1D EEM in nonlinear optical materials depend on the size quantum numbers and Fermi energy due to the anisotropic spin orbit splitting constant and the crystal field splitting respectively. The 1D EEM is Bi, IV-VI, stressed Kane type semiconductors and Ge also depends on both the Fermi energy and the size quantum numbers which are the characteristic features of such NWs. The EEM increases with increase in concentration and decreasing film thickness and for ternary and quaternary compounds the EEM increases with increase in alloy composition. Under certain special conditions all the results for all the materials get simplified into the well known parabolic energy bands and thus confirming the compatibility test.
Resumo:
This paper reports on the mass transport behavior of infinitely extended, continuous, and very thin metallic films under the influence of electric current. Application of direct current of high densities (> 10(8) A/m(2)) results in visible melting of thin film at only one of the electrodes, and the melt then flows towards the other electrode in a circularly symmetric fashion forming a microscale ring pattern. For the two tested thin film systems, namely Cr and Al, of thicknesses ranging from 4 to 20 nm, the above directional flow consistently occurred from cathode to anode and anode to cathode, respectively. Furthermore, application of alternating electric current results in flow of the liquid material from both the electrodes. The dependence of critical flow behavior parameters, such as flow direction, flow velocity, and evolution of the ring diameter, are experimentally determined. Analytical models based on the principles of electromigration in liquid-phase materials are developed to explain the experimental observations.
Resumo:
We present a novel scheme where Dirac neutrinos are realized even if lepton number violating Majorana mass terms are present. The setup is the Randall-Sundrum framework with bulk right-handed neutrinos. Bulk mass terms of both Majorana and Dirac type are considered. It is shown that massless zero mode solutions exist when the bulk Dirac mass term is set to zero. In this limit, it is found that the effective 4D small neutrino mass is primarily of Dirac nature, with the Majorana-type contributions being negligible. Interestingly, this scenario is very similar to the one known with flat extra dimensions. Neutrino phenomenology is discussed by fitting both charged lepton masses and neutrino masses simultaneously. A single Higgs localized on the IR brane is highly constrained, as unnaturally large Yukawa couplings are required to fit charged lepton masses. A simple extension with two Higgs doublets is presented, which facilitates a proper fit for the lepton masses.
Resumo:
Is the Chandrasekhar mass limit for white dwarfs (WDs) set in stone? Not anymore, recent observations of over-luminous, peculiar type Ia supernovae can be explained if significantly super-Chandrasekhar WDs exist as their progenitors, thus barring them to be used as cosmic distance indicators. However, there is no estimate of a mass limit for these super-Chandrasekhar WD candidates yet. Can they be arbitrarily large? In fact, the answer is no! We arrive at this revelation by exploiting the flux freezing theorem in observed, accreting, magnetized WDs, which brings in Landau quantization of the underlying electron degenerate gas. This essay presents the calculations which pave the way for the ultimate (significantly super-Chandrasekhar) mass limit of WDs, heralding a paradigm shift 80 years after Chandrasekhar's discovery.
Resumo:
Heat and mass transfer studies in a calandria based reactor is quite complex both due to geometry and due to the complex mixing flow. It is challenging to devise optimum operating conditions with efficient but safe working range for such a complex configuration. Numerical study known to be very effective is taken up for investigation. In the present study a 3D RANS code with turbulence model has been used to compute the flow fields and to get the heat transfer characteristics to understand certain design parameters of engineering importance. The angle of injection and of the coolant liquid has a large effect on the heat transfer within the reactor.
Resumo:
The impact of future climate change on the glaciers in the Karakoram and Himalaya (KH) is investigated using CMIP5 multi-model temperature and precipitation projections, and a relationship between glacial accumulation-area ratio and mass balance developed for the region based on the last 30 to 40 years of observational data. We estimate that the current glacial mass balance (year 2000) for the entire KH region is -6.6 +/- 1 Gta(-1), which decreases about sixfold to -35 +/- 2 Gta(-1) by the 2080s under the high emission scenario of RCP8.5. However, under the low emission scenario of RCP2.6 the glacial mass loss only doubles to -12 +/- 2 Gta(-1) by the 2080s. We also find that 10.6 and 27 % of the glaciers could face `eventual disappearance' by the end of the century under RCP2.6 and RCP8.5 respectively, underscoring the threat to water resources under high emission scenarios.
Resumo:
We clarify important physics issues related to the recently established new mass limit for magnetized white dwarfs which is significantly super-Chandrasekhar. The issues include, justification of high magnetic field and the corresponding formation of stable white dwarfs, contribution of the magnetic field to the total density and pressure, flux freezing, variation of magnetic field and related currents therein. We also attempt to address the observational connection of such highly magnetized white dwarfs.
Resumo:
We consider minimal models of gauge mediated supersymmetry breaking with an extra U(1) factor in addition to the Standard Model gauge group. A U(1) charged, Standard Model singlet is assumed to be present which allows for an additional NMSSM like coupling, lambda HuHdS. The U(1) is assumed to be flavour universal. Anomaly cancellation in the MSSM sector requires additional coloured degrees of freedom. The S field can get a large vacuum expectation value along with consistent electroweak symmetry breaking. It is shown that the lightest CP even Higgs boson can attain mass of the order of 125 GeV. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
Resumo:
We investigate the electronic properties of Germanane and analyze its importance as 2-D channel material in switching devices. Considering two types of morphologies, namely, chair and boat, we study the real band structure, the effective mass variation, and the complex band structure of unstrained Germanane by density-functional theory. The chair morphology turns out to be a more effective channel material for switching devices than the boat morphology. Furthermore, we study the effect of elastic strain, van der Waals force, and vertical electric field on these band structure properties. Due to its very low effective mass with relatively high-energy bandgap, in comparison with the other 2-D materials, Germanane appears to provide superior performance in switching device applications.
Resumo:
We address the issue of stability of recently proposed significantly super-Chandrasekhar white dwarfs. We present stable solutions of magnetostatic equilibrium models for super-Chandrasekhar white dwarfs pertaining to various magnetic field profiles. This has been obtained by self-consistently including the effects of the magnetic pressure gradient and total magnetic density in a general relativistic framework. We estimate that the maximum stable mass of magnetized white dwarfs could be more than 3 solar mass. This is very useful to explain peculiar, overluminous type Ia supernovae which do not conform to the traditional Chandrasekhar mass-limit.
Resumo:
We compute the one loop corrections to the CP-even Higgs mass matrix in the supersymmetric inverse seesaw model to single out the different cases where the radiative corrections from the neutrino sector could become important. It is found that there could be a significant enhancement in the Higgs mass even for Dirac neutrino masses of O(30) GeV if the left-handed sneutrino soft mass is comparable or larger than the right-handed neutrino mass. In the case where right-handed neutrino masses are significantly larger than the supersymmetry breaking scale, the corrections can utmost account to an upward shift of 3 GeV. For very heavy multi TeV sneutrinos, the corrections replicate the stop corrections at 1-loop. We further show that general gauge mediation with inverse seesaw model naturally accommodates a 125 GeV Higgs with TeV scale stops. (C) 2014 The Authors. Published by Elsevier B.V.
Resumo:
Resonant sensors and crystal oscillators for mass detection need to be excited at very high natural frequencies (MHz). Use of such systems to measure mass of biological materials affects the accuracy of mass measurement due to their viscous and/or viscoelastic properties. The measurement limitation of such sensor system is the difficulty in accounting for the ``missing mass'' of the biological specimen in question. A sensor system has been developed in this work, to be operated in the stiffness controlled region at very low frequencies as compared to its fundamental natural frequency. The resulting reduction in the sensitivity due to non-resonant mode of operation of this sensor is compensated by the high resolution of the sensor. The mass of different aged drosophila melanogaster (fruit fly) is measured. The difference in its mass measurement during resonant mode of operation is also presented. That, viscosity effects do not affect the working of this non-resonant mass sensor is clearly established by direct comparison. (C) 2014 AIP Publishing LLC.
Resumo:
We show that the upper bound for the central magnetic field of a super-Chandrasekhar white dwarf calculated by Nityananda and Konar Phys. Rev. D 89, 103017 (2014)] and in the concerned comment, by the same authors, against our work U. Das and B. Mukhopadhyay, Phys. Rev. D 86, 042001 (2012)] is erroneous. This in turn strengthens the argument in favor of the stability of the recently proposed magnetized super-Chandrasekhar white dwarfs. We also point out several other numerical errors in their work. Overall we conclude that the arguments put forth by Nityananda and Konar are misleading.
Resumo:
Ionic polymer metal composites (IPMC) actuator for flapping insect scale wing is advantageous due to its low mass, high deflection and simple actuation mechanism. Some of the factors that affect the actuation of IPMC are the amount of hydration in the polymer membrane and the environmental conditions such as temperature, humidity etc. In structural design, the attachment of wing on the IPMC actuators is an important concern as the attached wing increases the mass of actuators thereby affecting the parameters like displacement, stiffness and resonant frequencies. Such IPMC actuators have to produce sufficient actuation force and frequency to lift and flap the attached wing. Therefore, it is relevant to study the influence of attachment of wing on the actuator parameters (displacement, resonant frequency, block force and stiffness) and performance of the actuators. This paper is divided into two parts; the first part deals with the modeling of the IPMC actuators for its effect on the level of water uptake and temperature using energy based method. The modeling method adapted is validated with the experimental procedure used to actuate the IPMC. The second part deals with the experimental analysis of IPMC actuation at dry, wet and in water conditions. The effect of end mass loading on the performance of 20 Hz, high frequency actuator (HFA) and 8.7 Hz, low frequency IPMC actuators (LFA) and sensors is studied. The IPMC actuators are attached with IPMC flapping wing at its free end and performance analysis on the attached wing is also carried out.
Resumo:
The 2011 outburst of the black hole candidate IGR J17091-3624 followed the canonical track of state transitions along with the evolution of quasi-periodic oscillation (QPO) frequencies before it began exhibiting various variability classes similar to GRS 1915+105. We use this canonical evolution of spectral and temporal properties to determine the mass of IGR J17091-3624, using three different methods: photon index (Gamma)-QPO frequency (nu) correlation, QPO frequency (nu)-time (day) evolution, and broadband spectral modeling based on two-component advective flow (TCAF). We provide a combined mass estimate for the source using a naive Bayes based joint likelihood approach. This gives a probable mass range of 11.8 M-circle dot-13.7 M-circle dot. Considering each individual estimate and taking the lowermost and uppermost bounds among all three methods, we get a mass range of 8.7 M-circle dot-15.6 M-circle dot with 90% confidence. We discuss the possible implications of our findings in the context of two-component accretion flow.