142 resultados para Lattice Field Theory


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Starting from the time-dependent Ginzburg-Landau equations for a type II superconductor, we derive the equations of motion for the displacement field of a moving vortex lattice ignoring pinning and inertia. We show that it is linearly stable and, surprisingly, that it supports wavelike long-wavelength excitations arising not from inertia or elasticity but from the strain-dependent mobility of the moving lattice. It should be possible to image these waves, whose speeds are a few mu m/s, using fast scanning tunneling microscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the effect of lattice orientation on the fields prevailing near a notch tip is investigated pertaining to various constraint levels in FCC single crystals. A modified boundary layer formulation is employed and numerical solutions under mode I, plane strain conditions are generated by assuming an elastic-perfectly plastic FCC single crystal. The analysis is carried out corresponding to different lattice orientations with respect to the notch line. It is found that the near-tip deformation field, especially the development of kink or slip shear bands is sensitive to the constraint level. The stress distribution and the size and shape of the plastic zone near the notch tip are also strongly influenced by the level of T-stress. The present results clearly establish that ductile single crystal fracture geometries would progressively lose crack tip constraint as the T-stress becomes more negative irrespective of lattice orientation. Also, the near-tip field for a range of constraint levels can be characterized by two-parameters such as K-T or J-Q as in isotropic plastic solids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a simplified theory of carrier backscattering coefficient in a twofold degenerate asymmetric bilayer graphene nanoribbon (BGN) under the application of a low static electric field. We show that for a highly asymmetric BGN(Delta = gamma), the density of states in the lower subband increases more that of the upper, in which Delta and gamma are the gap and the interlayer coupling constant, respectively. We also demonstrate that under the acoustic phonon scattering regime, the formation of two distinct sets of energy subbands signatures a quantized transmission coefficient as a function of ribbon width and provides an extremely low carrier reflection coefficient for a better Landauer conductance even at room temperature. The well-known result for the ballistic condition has been obtained as a special case of the present analysis under certain limiting conditions which forms an indirect validation of our theoretical formalism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cobalt and iron nanoparticles are doped in carbon nanotube (CNT)/polymer matrix composites and studied for strain and magnetic field sensing properties. Characterization of these samples is done for various volume fractions of each constituent (Co and Fe nanoparticles and CNTs) and also for cases when only either of the metallic components is present. The relation between the magnetic field and polarization-induced strain are exploited. The electronic bandgap change in the CNTs is obtained by a simplified tight-binding formulation in terms of strain and magnetic field. A nonlinear constitutive model of glassy polymer is employed to account for (1) electric bias field dependent softening/hardening (2) CNT orientations as a statistical ensemble and (3) CNT volume fraction. An effective medium theory is then employed where the CNTs and nanoparticles are treated as inclusions. The intensity of the applied magnetic field is read indirectly as the change in resistance of the sample. Very small magnetic fields can be detected using this technique since the resistance is highly sensitive to strain. Its sensitivity due to the CNT volume fraction is also discussed. The advantage of this sensor lies in the fact that it can be molded into desirable shape and can be used in fabrication of embedded sensors where the material can detect external magnetic fields on its own. Besides, the stress-controlled hysteresis of the sample can be used in designing memory devices. These composites have potential for use in magnetic encoders, which are made of a magnetic field sensor and a barcode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multiple UAV search and attack mission in a battlefield involves allocating UAVs to different target tasks efficiently. This task allocation becomes difficult when there is no communication among the UAVs and the UAVs sensors have limited range to detect the targets and neighbouring UAVs, and assess target status. In this paper, we propose a team theoretic approach to efficiently allocate UAVs to the targets with the constraint that UAVs do not communicate among themselves and have limited sensor range. We study the performance of team theoretic approach for task allocation on a battle field scenario. The performance obtained through team theory is compared with two other methods, namely, limited sensor range but with communication among all the UAVs, and greedy strategy with limited sensor range and no communication. It is found that the team theoretic strategy performs the best even though it assumes limited sensor range and no communication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a simplified theoretical formulation of the Fowler-Nordheim field emission (FNFE) under magnetic quantization and also in quantum wires of optoelectronic materials on the basis of a newly formulated electron dispersion law in the presence of strong electric field within the framework of k.p formalism taking InAs, InSb, GaAs, Hg(1-x)Cd(x)Te and In(1-x)Ga(x) As(y)P(1-y) lattice matched to InP as examples. The FNFE exhibits oscillations with inverse quantizing magnetic field and electron concentration due to SdH effect and increases with increasing electric field. For quantum wires the FNFE increases with increasing film thickness due to the existence van-Hove singularity and the magnitude of the quantum jumps are not of same height indicating the signature of the band structure of the material concerned. The appearance of the humps of the respective curves is due to the redistribution of the electrons among the quantized energy levels when the quantum numbers corresponding to the highest occupied level changes from one fixed value to the others. Although the field current varies in various manners with all the variables in all the limiting cases as evident from all the curves, the rates of variations are totally band-structure dependent. Under certain limiting conditions, all the results as derived in this paper get transformed in to well known Fowler-Nordheim formula. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article we review classical and modern Galois theory with historical evolution and prove a criterion of Galois for solvability of an irreducible separable polynomial of prime degree over an arbitrary field k and give many illustrative examples.