246 resultados para Glucagon-like insulinotropic peptide
Resumo:
A beta (39-43 aminoacid residues) is the principal peptide component of amyloid deposits in Alzheimer's disease (AD). A beta peptide is derived from the amyloid precursor protein (APP) in which mutations give rise to many forms of familial AD. Aluminium is reported to play a key role in inducing conformational change in the synthetic beta-amyloid peptide (1-40)from alpha-helix to beta-pleated sheet, leading to aggregation and fibrillar formation. We have studied the interaction of amino acid-Al complexes such as D-Asp-Al and L-Glu-Al with A beta(1-40) in TFE/buffer (70% TFE and 30% H2O v/v pH 6.7) mixture using CD spectroscopy. The interaction of either of these amino acid complexes with A beta(1-40) results in loss of alpha-helical content and the peptide is more unstructured compared to free Al3+ in the solution. Our data strongly support the idea, that the Al3+ in the form of aminoacid-Al complexes is more effective in inducing random coil conformation in the A beta peptide than the free Al3+ present in the solution.
Resumo:
Results of Western blot analysis carried out with an interstitial cell extract from male guinea pig and ovarian extract from immature female rats administered equine chorionic gonadotropin (eCG) provide supportive evidence to our earlier suggestion that an 8-kDa peptide is involved in acquisition of steroidogenic capacity by the rat Leydig cells. It was found that though the signal was observed in other tissues such as liver, kidney and lung which do not produce gonadal hormones, the peptide was modulated only by lutenizing hormone (LH) in the rat Leydig cells.
Resumo:
The serendipitous observation of a C-H...O hydrogen bond mediated polypeptide chain reversal in synthetic peptide helices has led to a search for the occurrence of a similar motif in protein structures. From a dataset of 634 proteins, 1304 helices terminating in a Schellman motif have been examined. The C-H...O interaction between the T - 4 (CH)-H-alpha and T + 1 C=O group (C...O 3.5 Angstrom) becomes possible only when the T + 1 residue adopts an extended beta conformation (T is defined as the helix terminating residue adopting an alpha(L) conformation). In all, 111 examples of this chain reversal motif have been identified and the compositional and conformational. preferences at positions T - 4, T, and T + 1 determined. A marked preference for residues like Set, Glu and Gln is observed at T - 4 position with the motif being further stabilized by the formation of a side-chain-backbone O...H-N hydrogen bond involving the side-chain of residue T - 4 and the N-H group of residue T + 3. In as many as 57 examples, the segment following the helix was extended with three to four successive residues in beta conformation. In a majority of these cases, the succeeding beta strand lies approximately antiparallel with the helix, suggesting that the backbone C-H...O interactions may provide a means of registering helices and strands in an antiparallel orientation. Two examples were identified in which extended registry was detected with two sets of C-H...O hydrogen bonds between (T - 4) (CH)-H-alpha...C=O (T + 1) and (T - 8) (CH)-H-alpha...C=O (T + 3). 0 2002 Published by Elsevier Science Ltd.
Resumo:
Angiotensin converting enzyme (ACE) regulates the blood pressure by converting angiotensin I to angiotensin II and bradykinin to bradykinin 1-7. These two reactions elevate the blood pressure as angiotensin II and bradykinin are vasoconstrictory and vasodilatory hormones, respectively. Therefore, inhibition of ACE is an important strategy for the treatment of hypertension. The natural substrates of ACE, i.e., angiotensin II and bradykinin, contain a Pro-Phe motif near the site of hydrolysis. Therefore, there may be a Pro-Phe binding pocket at the active site of ACE, which may facilitate the substrate binding. In view of this, we have synthesized a series of thiol-and selenol-containing dipeptides and captopril analogues and studied their ACE inhibition activities. This study reveals that both the selenol or thiol moiety and proline residues are essential for ACE inhibition. Although the introduction of a Phe residue to captopril and its selenium analogue considerably reduces the inhibitory effect, there appears to be a Phe binding pocket at the active site of ACE.
Resumo:
Occasionally, ribosomes stall on mRNAs prior to the completion of the polypeptide chain. In Escherichia coli and other eubacteria, tmRNA-mediated trans-translation is a major mechanism that recycles the stalled ribosomes. The tmRNA possesses a tRNA-like domain and a short mRNA region encoding a short peptide (ANDENYALAA in E. coli) followed by a termination codon. The first amino acid (Ala) of this peptide encoded by the resume codon (GCN) is highly conserved in tmRNAs in different species. However, reasons for the high evolutionary conservation of the resume codon identity have remained unclear. In this study, we show that changing the E. coli tmRNA resume codon to other efficiently translatable codons retains efficient functioning of the tmRNA. However, when the resume codon was replaced with the low-usage codons, its function was adversely affected. Interestingly, expression of tRNAs decoding the low-usage codon from plasmid-borne gene copies restored efficient utilization of tmRNA. We discuss why in E. coli, the GCA (Ala) is one of the best codons and why all codons in the short mRNA of the tmRNA are decoded by the abundant tRNAs.
Resumo:
The Walker sequence, GXXXXGKT, present in all the six subunits of F-1-ATPase exists in a folded form, known as phosphate-binding loop (P-loop). Analysis of the Ramachandran angles showed only small RMS deviation between the nucleotide-bound and nucleotide-free forms. This indicated a good overlap of the backbone loops. The catalytic beta-subunits (chains D, E and F) showed significant changes in the Ramachandran angles and the side chain torsion angles, but not the structural alpha-subunits (chains A, B and C). Most striking among these are the changes associated with Val160 and Gly161 corresponding to a flip in the peptide unit between them when a nucleotide is bound (chains D or F compared to nucleotide-free chain E). The conformational analysis further revealed a hitherto unnoticed hydrogen bond between amide-N of the flipped Gly161 and terminal phosphate-O of the nucleotide. This assigns a role for this conserved amino acid, otherwise ignored, of making an unusual direct interaction between the peptide backbone of the enzyme protein and the incoming nucleotide substrate. Significance of this interaction is enhanced, as it is limited only to the catalytic subunits, and also likely to involve a mechanical rotation of bonds of the peptide unit. Hopefully this is part of the overall events that link the chemical hydrolysis of ATP with the mechanical rotation of this molecule, now famous as tiny molecular motor.
Resumo:
Propargyl pentafluorophenyl carbonate was synthesised in quantitative yield by the reaction of propargyl chloroformate and pentafluorophenol. All the N-propargyloxycarbonyl (N-Poc) amino acids were obtained in good yield. The use of Poc-OPfp in peptide synthesis has been explored. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
9-Anthryl and 1-pyrenyl terpyridines (1 and 2, respectively), key precursors for the design of novel fluorescent sensors have been synthesized and characterized by H-1 NMR, mass spectroscopy and X-ray crystallography. Twisted molecular conformations for each 1 and 2 were observed in their single crystal structures. Energy minimization calculations for the 1 and 2 using the semi-empirical AM1 method show that the 'twisted' conformation is intrinsic to these systems. We observe interconnected networks of edge-to-face CH...pi interactions, which appear to be cooperative in nature, in each of the crystal structures. The two twisted molecules, although having differently shaped polyaromatic hydrocarbon substituents, show similar patterns of edge-to-face CH...pi interactions.The presently described systems comprise of two aromatic surfaces that are almost orthogonal to each other. This twisted or orthogonal nature of the molecules leads to the formation of interesting multi-directional ladder like supramolecular organizations. A combination of edge-to-face and face-to-face packing modes helps to stabilize these motifs. The ladder like architecture in 1 is helical in nature. (C) 2002 Published by Elsevier Science B.V.
Resumo:
Sequence-specific bidentate binding to double-stranded (ds)-DNA by 'tail-to-tail' linked dimeric, distamycin analogues is described; compared to their monomeric analogues, these dimers exhibit greater affinity and longer binding site size and open up a novel avenue in the design of minor groove binders that overcome the phasing problem.
Resumo:
A one-dimensional water wire has been characterized by X-ray diffraction in single crystals of the tripeptide Ac-Phe-Pro-Trp-OMe. Crystals in the hexagonal space group P6(5) reveal a central hydrophobic channel lined by aromatic residues which entraps an approximately linear array of hydrogen bonded water molecules. The absence of any significant van der Waals contact with the channel walls suggests that the dominant interaction between the ``water wire'' and ``peptide nanotube'' is electrostatic in origin. An energy difference of 16 KJmol(-1) is estimated for the distinct orientations of the water wire dipole with respect to the macrodipole of the peptide nanotube. The structural model suggests that Grotthuss type proton conduction may, through constricted hydrophobic channels, be facilitated by concerted, rotational reorientation of water molecules.
Resumo:
Part classification and coding is still considered as laborious and time-consuming exercise. Keeping in view, the crucial role, which it plays, in developing automated CAPP systems, the attempts have been made in this article to automate a few elements of this exercise using a shape analysis model. In this study, a 24-vector directional template is contemplated to represent the feature elements of the parts (candidate and prototype). Various transformation processes such as deformation, straightening, bypassing, insertion and deletion are embedded in the proposed simulated annealing (SA)-like hybrid algorithm to match the candidate part with their prototype. For a candidate part, searching its matching prototype from the information data is computationally expensive and requires large search space. However, the proposed SA-like hybrid algorithm for solving the part classification problem considerably minimizes the search space and ensures early convergence of the solution. The application of the proposed approach is illustrated by an example part. The proposed approach is applied for the classification of 100 candidate parts and their prototypes to demonstrate the effectiveness of the algorithm. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Fragmentation behavior of two classes of cyclodepsipeptides, isariins and isaridins, obtained from the fungus Isaria, was investigated in the presence of different metal ions using multistage tandem mass spectrometry (MS(n)) with collision induced dissociation (CID) and validated by NMR spectroscopy. During MS(n) process, both protonated and metal-cationized isariins generated product ions belonging to the identical `b-ion' series, exhibiting initial backbone cleavage explicitly at the beta-ester bond. Fragmentation behavior for the protonated and metal-cationized acyclic methyl ester derivative of isariins was very similar. On the contrary, isaridins during fragmentation produced ions belonging to the `b' or/and the `y' ion series depending on the nature of interacting metal ions, due to initial backbone cleavages at the beta-ester linkage or/and at a specific amide linkage. Interestingly, independent of the nature of the interacting metal ions, the product ions formed from the acyclic methyl ester derivative of isaridins belonged only to the `y-type'. Complementary NMR data showed that, while all metal ions were located around the beta-ester group of isariins, the metal ion interacting sites varied across the backbone for isaridins. Combined MS and NMR data suggest that the different behavior in sequence specific charge-driven fragmentation of isariins and isaridins is predetermined because of the constituent beta-hydroxy acid residue in isariins and the cis peptide bond in isaridins.
Resumo:
We find that at low temperature water, large amplitude (similar to 60 degrees) rotational jumps propagate like a string, with the length of propagation increasing with lowering temperature. The strings are formed by mobile 5-coordinated water molecules which move like a Glarum defect (J. Chem. Phys., 1960, 33, 1371), causing water molecules on the path to change from 4-coordinated to 5-coordinated and again back to 4-coordinated water, and in the process cause the tagged water molecule to jump, by following essentially the Laage-Hynes mechanism (Science, 2006, 311, 832-835). The effects on relaxation of the propagating defect causing large amplitude jumps are manifested most dramatically in the mean square displacement (MSD) and also in the rotational time correlation function of the O-H bond of the molecule that is visited by the defect (transient transition to the 5-coordinated state). The MSD and the decay of rotational time correlation function, both remain quenched in the absence of any visit by the defect, as postulated by Glarum long time ago. We establish a direct connection between these propagating events and the known thermodynamic and dynamic anomalies in supercooled water. These strings are found largely in the regions that surround the relatively rigid domains of 4-coordinated water molecules. The propagating strings give rise to a noticeable dynamical heterogeneity, quantified here by a sharp rise in the peak of the four-point density response function, chi(4)(t). This dynamics heterogeneity is also responsible for the breakdown of the Stokes-Einstein relation.