167 resultados para Enhancement Value


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a thermodynamically consistent non-local plasticity model, the mechanistic origin of enhancement in ductility and suppression of dominant shear banding in nanoglasses (NGs) is analysed. It is revealed that the interaction stress between flow defects plays a central role in promoting global plasticity of NGs. Specifically, we find that the intrinsic length associated with this stress provides a scaling for the shear band width and its coupling with grain size governs the level of enhancement in the deformation behaviour of NGs. The present work may provide useful insights in developing highly ductile NGs for practical engineering applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work investigates the potential of graphene oxide-cobalt ferrite nanoparticle (GO-CoFe2O4) composite as image contrast enhancing material in Magnetic Resonance Imaging (MRI). In the preset work, GO-CoFe2O4 composites were produced by a two-step synthesis process. In the first step, graphene oxide (GO) was synthesized, and in the second step CoFe2O4 nanoparticles were synthesized in a reaction mixture containing GO to yield graphene GO-CoFe2O4 composite. Proton relaxivity value obtained from the composite was 361 mM(-1)s(-1). This value of proton relaxivity is higher than a majority of reported relaxivity values obtained using several ferrite based contrast agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A newly synthesized and structurally characterized quinazoline derivative (L) has been shown to act as a quick-response chemosensor for Al3+ with a high selectivity over other metal ions in water-DMSO. In the presence of Al3+, L shows a red-shifted ratiometric enhancement in fluorescence as a result of internal charge transfer and chelation-enhanced fluorescence through the inhibition of a photo-induced electron transfer mechanism. This probe detects Al3+ at concentrations as low as 1.48 nM in 100 mM HEPES buffer (DMSO-water, 1 : 9 v/v) at biological pH with a very short response time (15-20 s). L was applied to biological imaging to validate its utility as a fluorescent probe for monitoring Al3+ ions in living cells, illustrating its value in practical environmental and biological systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen storage capacity of Tin-1B (n = 3-7) clusters is studied and compared with that of the pristine Ti-n (n = 3-7), using density functional theory (DFT) based calculations. Among these clusters, Ti3B shows the most significant enhancement in the storage capacity by adsorbing 12 H-2, out of which three are dissociated and the other nine are stored as dihydrogen via Kubas-interaction. The best storage in Ti3B is owed to a large charge transfer from Ti to B along with the largest distance of Ti empty d-states above the Fermi level, which is a distinct feature of this particular cluster. Furthermore, the effect of substrates on the storage capacity of Ti3B was assessed by calculating the number of adsorbed H-2 on Ti-3 cluster anchored onto B atoms in the B-doped graphene, BC3, and BN substrates. Similar to free-standing Ti3B, Ti-3 anchored onto boron atom in BC3, stores nine di-hydrogen via Kubas interaction, at the same time eliminating the total number of non-useful dissociated hydrogen. Gibbs energy of adsorption as a function of H-2 partial pressure, indicated that at 250 K and 300 K the di-hydrogens on Ti-3@BC3 adsorb and desorb at ambient pressures. Importantly, Ti-3@BC3 avoids the clustering, hence meeting the criteria for efficient and reversible hydrogen storage media. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the strategy of an evader using a decoy, against a pursuer in a planar engagement scenario, is considered. The decoy launch angle (decoy heading) and decoy launch time are the decision variables. An analytic expression is derived for the range of decoy launch angles, as a function of launch time that guarantees the effectiveness of the decoy in luring the pursuer. This is used to define an effective launch envelope for the decoy. Extensive simulation studies are carried out for different decoy launch angles and launch time. The simulation results closely match the analytical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eu2+ ion doped into a suitable host results in an efficient luminophore with engineering relevance; however stabilizing this ion in a host is known to be a challenge. Here we report a novel approach for the synthesis of efficient CaAl2O4 phosphor containing Eu2+ luminophore and Cr3+ activator. CaAl2O4:Eu2+, Cr3+ is prepared by a solution combustion (SCS) method using (i) urea, (ii) oxalyl dihydrazide (ODH) and (iii) fuel-blend (in which overall fuel to oxidizer ratio (F/O) = 1). A Multi-channel thermocouple setup is used to measure the flame temperatures to study the nature of combustion of various fuel mixtures. The variation of adiabatic flame temperature is calculated theoretically for different urea/ODH mixture ratios according to thermodynamic concept and correlated with the observed flame temperatures. Blue emission of the CaAl2O4:Eu2+ phosphor is enhanced similar to 20 times using the fuel-blend approach. Using the observed reaction kinetics, and the known chemistry of smoldering type combustion, a mechanism is proposed for the observed stabilization of Eu2+ ion in the fuel-blend case. This also explains the observed improvement in blue light emission. We show that the right choice of the fuel ratio is essential for enhancing photoluminescence (PL) emission. The PL intensity is highest for ODH lean and urea rich combination (i.e. when the ratio of ODH:urea is 1:5); measured color purity is comparable to commercial blue phosphor, BAM:Eu2+. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature (12 K <= T <= 300 K) dependent extended x-ray absorption fine structure (EXAFS) studies at the Fe K edge in FeSe1-xTex (x = 0, 0.5 and 1.0) compounds have been carried out to understand the reasons for the increase in T-C upon Te doping in FeSe. While local distortions are present near superconducting onset in FeSe and FeSe0.5Te0.5, they seem to be absent in non superconducting FeTe. Of crucial importance is the variation of anion height. In FeSe0.5Te0.5, near the superconducting onset, the two heights, h(Fe-Se) and h(Fe-Te) show a nearly opposite behaviour. These changes indicate a possible correlation between Fe-chalcogen hybridization and the superconducting transition temperature in these Fe-chalcogenides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement of the self-coupling of the 125 GeV Higgs boson is one of the most crucial tasks for a high luminosity run of the LHC, and it can only be measured in the di-Higgs final state. In the minimal supersymmetric standard model, heavy CP even Higgs (H) can decay into a lighter 125 GeV Higgs boson (h) and, therefore, can influence the rate of di-Higgs production. We investigate the role of single H production in the context of measuring the self-coupling of h. We have found that the H -> hh decay can change the value of Higgs (h) self-coupling substantially, in a low tan beta regime where the mass of the heavy Higgs boson lies between 250 and 600 GeV and, depending on the parameter space, it may be seen as an enhancement of the self-coupling of the 125 GeV Higgs boson.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential of graphene oxide-Fe3O4 nanoparticle (GO-Fe3O4) composite as an image contrast enhancing material in magnetic resonance imaging has been investigated. Proton relaxivity values were obtained in three different homogeneous dispersions of GO-Fe3O4 composites synthesized by precipitating Fe3O4 nanoparticles in three different reaction mixtures containing 0.01 g, 0.1 g, and 0.2 g of graphene oxide. A noticeable difference in proton relaxivity values was observed between the three cases. A comprehensive structural and magnetic characterization revealed discrete differences in the extent of reduction of the graphene oxide and spacing between the graphene oxide sheets in the three composites. The GO-Fe3O4 composite framework that contained graphene oxide with least extent of reduction of the carboxyl groups and largest spacing between the graphene oxide sheets provided the optimum structure for yielding a very high transverse proton relaxivity value. It was found that the GO-Fe3O4 composites possessed good biocompatibility with normal cell lines, whereas they exhibited considerable toxicity towards breast cancer cells. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The loss of tropical forests and associated biodiversity is a global concern. Conservation efforts in tropical countries such as India have mostly focused on state-administered protected areas despite the existence of vast tracts of forest outside these areas. We studied hornbills (Bucerotidae), an ecologically important vertebrate group and a flagship for tropical forest conservation, to assess the importance of forests outside protected areas in Arunachal Pradesh, north-east India. We conducted a state-wide survey to record encounters with hornbills in seven protected areas, six state-managed reserved forests and six community-managed unclassed forests. We estimated the density of hornbills in one protected area, four reserved forests and two unclassed forests in eastern Arunachal Pradesh. The state-wide survey showed that the mean rate of encounter of rufous-necked hornbills Aceros nipalensis was four times higher in protected areas than in reserved forests and 22 times higher in protected areas than in unclassed forests. The mean rate of encounter of wreathed hornbills Rhyticeros undulatus was twice as high in protected areas as in reserved forests and eight times higher in protected areas than in unclassed forests. The densities of rufous-necked hornbill were higher inside protected areas, whereas the densities of great hornbill Buceros bicornis and wreathed hornbill were similar inside and outside protected areas. Key informant surveys revealed possible extirpation of some hornbill species at sites in two protected areas and three unclassed forests. These results highlight a paradoxical situation where individual populations of hornbills are being lost even in some legally protected habitat, whereas they continue to persist over most of the landscape. Better protection within protected areas and creative community-based conservation efforts elsewhere are necessary to maintain hornbill populations in this biodiversity-rich region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-power requirements of contemporary sensing technology attract research on alternate power sources that can replace batteries. Energy harvesters absorb ambient energy and function as power sources for sensors and other low-power devices. Piezoelectric bimorphs have been demonstrating the preeminence in converting the mechanical energy in ambient vibrations into electrical energy. Improving the performance of these harvesters is pivotal as the energy in ambient vibrations is innately low. In this paper, we focus on enhancing the performance of piezoelectric harvesters through a multilayer and, in particular, a multistep configuration. Partial coverage of piezoelectric material in steps along the length of a cantilever beam results in a multistep piezoelectric energy harvester. We also discuss obtaining an approximate deformation curve for the beam with multiple steps in a computationally efficient manner. We find that the power generated by a multistep beam is almost 90% more than that by a multilayer harvester made out of the same volume of polyvinylidinefluoride ( PVDF), further corroborated experimentally. Improvements observed in the power generated prove to be a boon for weakly coupled low profile piezoelectric materials. Thus, in spite of the weak piezoelectric coupling observed in PVDF, its energy harvesting capability can be improved significantly using it in a multistep piezoelectric beam configuration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enhancement of localized electric field near metal (plasmonic) nanostructures can have various interesting applications in sensing, imaging, photovoltage generation etc., for which significant efforts are aimed towards developing plasmonic systems with well designed and large electromagnetic response. In this paper, we discuss the wafer scale fabrication and optical characterization of a unique three dimensional plasmonic material. The near field enhancement in the visible range of the electromagnetic spectrum obtained in these structures (order of 106), is close to the fundamental limit that can be obtained in this and similar EM field enhancement schemes. The large near field enhancement has been reflected in a huge Raman signal of graphene layer in close proximity to the plasmonic system, which has been validated with FEM simulations. We have integrated graphene photodetectors with this material to obtain record photovoltage generation, with responsivity as high as A/W. As far as we know, this is the highest sensitivity obtained in any plasmonic-graphene hybrid photodetection system till date.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A unique approach was adopted to drive the multiwall carbon nanotubes (MWNTs) to the interface of immiscible PVDF-ABS blends by wrapping the nanotubes with a mutually miscible homopolymer (PMMA). A tailor made interface with an improved stress transfer was achieved in the blends with PMMA wrapped MWNTs. This manifested in an impressive 108% increment in the tensile strength and 48% increment in the Young's modulus with 3 wt% PMMA wrapped MWNTs in striking contrast to the neat blends. As the PMMA wrapped MWNTs localized at the interface of PVDF-ABS blends, the electrical conductivity could be tuned with respect to only MWNTs, which were selectively localized in the PVDF phase, driven by thermodynamics. The electromagnetic shielding properties were assessed using a vector network analyser in a broad range of frequency, X-band (8-12 GHz) and Ku-band (12-18 GHz). Interestingly, enhanced EM shielding was achieved by this unique approach. The blends with only MWNTs shielded the EM waves mostly by reflection however, the blends with PMMA wrapped MWNTs (3 wt%) shielded mostly by absorption (62%). This study opens new avenues in designing materials, which show simultaneous improvement in mechanical, electrical conductivity and EM shielding properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural Health Monitoring (SHM) systems require integration of non-destructive technologies into structural design and operational processes. Modeling and simulation of complex NDE inspection processes are important aspects in the development and deployment of SHM technologies. Ray tracing techniques are vital simulation tools to visualize the wave path inside a material. These techniques also help in optimizing the location of transducers and their orientation with respect to the zone of interrogation. It helps in increasing the chances of detection and identification of a flaw in that zone. While current state-of-the-art techniques such as ray tracing based on geometric principle help in such visualization, other information such as signal losses due to spherical or cylindrical shape of wave front are rarely taken into consideration. The problem becomes a little more complicated in the case of dispersive guided wave propagation and near-field defect scattering. We review the existing models and tools to perform ultrasonic NDE simulation in structural components. As an initial step, we develop a ray-tracing approach, where phase and spectral information are preserved. This enables one to study wave scattering beyond simple time of flight calculation of rays. Challenges in terms of theory and modelling of defects of various kinds are discussed. Various additional considerations such as signal decay and physics of scattering are reviewed and challenges involved in realistic computational implementation are discussed. Potential application of this approach to SHM system design is highlighted and by applying this to complex structural components such as airframe structures, SHM is demonstrated to provide additional value in terms of lighter weight and/or longevity enhancement resulting from an extension of the damage tolerance design principle not compromising safety and reliability.