149 resultados para Bonded joints
Resumo:
Crystalline complexes of succinic acid with DL- and L-lysine have been prepared and analysed by X-ray diffraction. DL-Lysine complex: C6HIsN202 + 1 2- 1 ~C4H404 .~C4H604, Mr -- 264"2, PI, a = 5"506 (4), =8.070(2), c=14.089(2) A,, a=92.02(1), /3= 100"69 (3), y = 95"85 (3) ~>, Z = 2, Dx = 1"44 g cm -3, R = 0.059 for 2546 observed reflections. Form I of the e-lysine complex: C6HIsN20-, ~ .C4H504, Mr = 264.2, P1, a = 5" 125 (2), b = 8"087 (1), c = 8"689 (1) A,, a = 112.06 (1), /3 = 99.08 (2), y = 93"77(2) °, Z--l, D,,,=1"34(3), Dx=l"34gcm 3 R = 0.033 for 1475 observed reflections. Form II of + I 2- the e-lysine complex: C6H15N202 .,iC4H404 .- 1 I ") 4C4H604.4(C4HsO4""H'"CaH404)" , Mr = 264"2, P1, a = 10.143 (4), b = 10.256 (2), c = 12"916 (3) A,, a = 105.00 (2),/3 = 99-09 (3), y = 92"78 (3)::, Z = 4, Dm= 1"37(4), D,.= 1.38gcm 3, R=0.067 for 2809 observed reflections. The succinic acid molecules in the structures exhibit a variety of ionization states. Two of the lysine conformations found in the complexes have been observed for the first time in crystals containing lysine. Form II of the L-lysine complex is highly pseudosymmetric. In all the complexes, unlike molecules aggregate into separate alternating layers. The basic element of aggregation in the lysine layer in the complexes is an S2-type head-to-tail sequence. This element combines in different ways in the three structures. The basic element of aggre gation in the succinic acid layer in the complexes is a hydrogen-bonded ribbon. The ribbons are interconnected indirectly through amino groups in the lysine layer.
Resumo:
In this manuscript, we propose a criterion for a weakly bound complex formed in a supersonic beam to be characterized as a `hydrogen bonded complex'. For a `hydrogen bonded complex', the zero point energy along any large amplitude vibrational coordinate that destroys the orientational preference for the hydrogen bond should be significantly below the barrier along that coordinate so that there is at least one bound level. These are vibrational modes that do not lead to the breakdown of the complex as a whole. If the zero point level is higher than the barrier, the `hydrogen bond' would not be able to stabilize the orientation which favors it and it is no longer sensible to characterize a complex as hydrogen bonded. Four complexes, Ar-2-H2O, Ar-2-H2S, C2H4-H2O and C2H4-H2S, were chosen for investigations. Zero point energies and barriers for large amplitude motions were calculated at a reasonable level of calculation, MP2(full)/aug-cc-pVTZ, for all these complexes. Atoms in molecules (AIM) theoretical analyses of these complexes were carried out as well. All these complexes would be considered hydrogen bonded according to the AIM theoretical criteria suggested by Koch and Popelier for C-H center dot center dot center dot O hydrogen bonds (U. Koch and P. L. A. Popelier, J. Phys. Chem., 1995, 99, 9747), which has been widely and, at times, incorrectly used for all types of contacts involving H. It is shown that, according to the criterion proposed here, the Ar-2-H2O/H2S complexes are not hydrogen bonded even at zero kelvin and C2H4-H2O/H2S complexes are. This analysis can naturally be extended to all temperatures. It can explain the recent experimental observations on crystal structures of H2S at various conditions and the crossed beam scattering studies on rare gases with H2O and H2S.
Resumo:
The omega amino acids have a larger degree of conformational variability than the alpha amino acids, leading to a greater diversity of backbone structures in peptides and polypeptides. The synthetic accessibility of chiral beta-amino acids and the recent observation of novel helical folds in oligomers of cyclic beta-amino acids has led to renewed interest in the stereochemistry of omega-amino acid containing peptides. This review focuses on the conformational characteristics of the polymethylene chain in omega-amino acid segments and surveys structural features in peptides established by X-ray diffraction. The literature on polymers of achiral omega-amino acids (nylon derivatives) and chiral, substituted derivatives derived from trifunctional alpha-amino acids, reveals that while sheet-like, intermolecular hydrogen bonded structures are formed by the former, folded helices appear favoured by the latter. omega-Amino acids promise to expand the repertoire of peptide folds.
Resumo:
Nature has used the all-alpha-polypeptide backbone of proteins to create a remarkable diversity of folded structures. Sequential patterns of 20 distinct amino adds, which differ only in their side chains, determine the shape and form of proteins. Our understanding of these specific secondary structures is over half a century old and is based primarily on the fundamental elements: the Pauling alpha-helix and beta-sheet. Researchers can also generate structural diversity through the synthesis of polypeptide chains containing homologated (omega) amino acid residues, which contain a variable number of backbone atoms. However, incorporating amino adds with more atoms within the backbone introduces additional torsional freedom into the structure, which can complicate the structural analysis. Fortunately, gabapentin (Gpn), a readily available bulk drug, is an achiral beta,beta-disubstituted gamma amino add residue that contains a cyclohexyl ring at the C-beta carbon atom, which dramatically limits the range of torsion angles that can be obtained about the flanking C-C bonds. Limiting conformational flexibility also has the desirable effect of increasing peptide crystallinity, which permits unambiguous structural characterization by X-ray diffraction methods. This Account describes studies carried out in our laboratory that establish Gpn as a valuable residue in the design of specifically folded hybrid peptide structures. The insertion of additional atoms into polypeptide backbones facilitates the formation of intramolecular hydrogen bonds whose directionality is opposite to that observed in canonical alpha-peptide helices. If hybrid structures mimic proteins and biologically active peptides, the proteolytic stability conferred by unusual backbones can be a major advantage in the area of medicinal chemistry. We have demonstrated a variety of internally hydrogen-bonded structures in the solid state for Gpn-containing peptides, including the characterization of the C-7 and C-9 hydrogen bonds, which can lead to ribbons in homo-oligomeric sequences. In hybrid alpha gamma sequences, district C-12 hydrogen-bonded turn structures support formation of peptide helices and hairpins in longer sequences. Some peptides that include the Gpn residue have hydrogen-bond directionality that matches alpha-peptide helices, while others have the opposite directionality. We expect that expansion of the polypeptide backbone will lead to new classes of foldamer structures, which are thus far unknown to the world of alpha-polypeptides. The diversity of internally hydrogen-bonded structures observed in hybrid sequences containing Gpn shows promise for the rational design of novel peptide structures incorporating hybrid backbones.
Pi-turns in proteins and peptides: Classification, conformation, occurrence, hydration and sequence.
Resumo:
The i + 5-->i hydrogen bonded turn conformation (pi-turn) with the fifth residue adopting alpha L conformation is frequently found at the C-terminus of helices in proteins and hence is speculated to be a "helix termination signal." An analysis of the occurrence of i + 5-->i hydrogen bonded turn conformation at any general position in proteins (not specifically at the helix C-terminus), using coordinates of 228 protein crystal structures determined by X-ray crystallography to better than 2.5 A resolution is reported in this paper. Of 486 detected pi-turn conformations, 367 have the (i + 4)th residue in alpha L conformation, generally occurring at the C-terminus of alpha-helices, consistent with previous observations. However, a significant number (111) of pi-turn conformations occur with (i + 4)th residue in alpha R conformation also, generally occurring in alpha-helices as distortions either at the terminii or at the middle, a novel finding. These two sets of pi-turn conformations are referred to by the names pi alpha L and pi alpha R-turns, respectively, depending upon whether the (i + 4)th residue adopts alpha L or alpha R conformations. Four pi-turns, named pi alpha L'-turns, were noticed to be mirror images of pi alpha L-turns, and four more pi-turns, which have the (i + 4)th residue in beta conformation and denoted as pi beta-turns, occur as a part of hairpin bend connecting twisted beta-strands. Consecutive pi-turns occur, but only with pi alpha R-turns. The preference for amino acid residues is different in pi alpha L and pi alpha R-turns. However, both show a preference for Pro after the C-termini. Hydrophilic residues are preferred at positions i + 1, i + 2, and i + 3 of pi alpha L-turns, whereas positions i and i + 5 prefer hydrophobic residues. Residue i + 4 in pi alpha L-turns is mainly Gly and less often Asn. Although pi alpha R-turns generally occur as distortions in helices, their amino acid preference is different from that of helices. Poor helix formers, such as His, Tyr, and Asn, also were found to be preferred for pi alpha R-turns, whereas good helix former Ala is not preferred. pi-Turns in peptides provide a picture of the pi-turn at atomic resolution. Only nine peptide-based pi-turns are reported so far, and all of them belong to pi alpha L-turn type with an achiral residue in position i + 4. The results are of importance for structure prediction, modeling, and de novo design of proteins.
Resumo:
This paper presents a constraint Jacobian matrix based approach to obtain the stiffness matrix of widely used deployable pantograph masts with scissor-like elements (SLE). The stiffness matrix is obtained in symbolic form and the results obtained agree with those obtained with the force and displacement methods available in literature. Additional advantages of this approach are that the mobility of a mast can be evaluated, redundant links and joints in the mast can be identified and practical masts with revolute joints can be analysed. Simulations for a hexagonal mast and an assembly with four hexagonal masts is presented as illustrations.
Resumo:
Flexible objects such as a rope or snake move in a way such that their axial length remains almost constant. To simulate the motion of such an object, one strategy is to discretize the object into large number of small rigid links connected by joints. However, the resulting discretised system is highly redundant and the joint rotations for a desired Cartesian motion of any point on the object cannot be solved uniquely. In this paper, we revisit an algorithm, based on the classical tractrix curve, to resolve the redundancy in such hyper-redundant systems. For a desired motion of the `head' of a link, the `tail' is moved along a tractrix, and recursively all links of the discretised objects are moved along different tractrix curves. The algorithm is illustrated by simulations of a moving snake, tying of knots with a rope and a solution of the inverse kinematics of a planar hyper-redundant manipulator. The simulations show that the tractrix based algorithm leads to a more `natural' motion since the motion is distributed uniformly along the entire object with the displacements diminishing from the `head' to the `tail'.
Resumo:
The synthesis of the octapeptide, benzyloxycarbonyl-(-aminoisobutyryl-L-prolyl)4-methyl ester [Z-(Aib-Pro)4-OMe] and an analysis of its solution conformation is reported. The octapeptide is shown to possess three strong intramolecular hydrogen bonds on the basis of studies of the solvent and temperature dependence of NH chemical shifts and rates of hydrogen-deuterium exchange. 13C studies are consistent with a structure involving only trans Aib-Pro bonds, while ir experiments support a hydrogen-bonded conformation. The Aib 3, 5, and 7 NH groups are shown to participate in hydrogen bonding. A 310 helical conformation compatible with the spectroscopic data is suggested. The proposed conformation consists of three type III -turns with Aib and Pro at the corners and stabilized by 4 1 intramolecular hydrogen bonds.
Resumo:
The benzylic methylene protons in a large number of benzyloxycarbonyl alpha-aminoisobutyric acid (Z-Aib) containing peptides, show chemical shift nonequivalence. The magnitude of the geminal nonequivalence is correlated with the involvement of the urethane carbonyl group, in an intramolecular hydrogen bond. Studies of the model compounds Z-Aib-Aib-Ala-NHMe, and Z-Aib-Aib-Aib-Pro-OMe clearly establish the presence of intramolecular hydrogen bonds, involving the urethane CO group. In both compounds marked anisochrony of the benzylic methylene protons is demonstrated. In Z-Aib-Aib-Pro-OMe, where a 4 leads to 1 hydrogen bonded beta-turn is not possible, the benzylic-CH2-protons appear as a singlet in CDCl3 and have a very small chemical shift difference in (CD3)2SO. The observation of such nonequivalence is of value in establishing whether the amino terminal Aib-Pro beta-turn is retained in large peptide-fragments of alamethicin.
Resumo:
In the title molecule, C20H13N3S, the triazoloisoquinoline ring system is approximately planar, with an r.m.s. deviation of 0.045 angstrom and a maximum deviation of 0.090 (2) angstrom from the mean plane for the triazole ring C atom which is bonded to the thiophene ring. The phenyl ring is twisted by 52.0 (1)degrees with respect to the mean plane of the triazoloisoquinoline ring system. The thiophene ring is rotationally disordered by approximately 180 degrees over two sites, the ratio of refined occupancies being 0.73 (1): 0.27 (1).
Resumo:
A reduced 3D continuum model of dynamic piezoelectricity in a thin-film surface-bonded to the substrate/host is presented in this article. While employing large area flexible thin piezoelectric films for novel applications in device/diagnostics, the feasibility of the proposed model in sensing the surface and/or sub-surface defects is demonstrated through simulations - which involve metallic beams with cracks and composite beam with delaminations of various sizes. We have introduced a set of electrical measures to capture the severity of the damage in the existing structures. Characteristics of these electrical measures in terms of the potential difference and its spatial gradients are illustrated in the time domain. Sensitivity studies of the proposed measures in terms of the defected areas and their region of occurence relative to the sensing film are reported. The simulations' results for electrical measures for damaged hosts/substrates are compared with those due to undamaged hosts/substrates, which show monotonicity with high degree of sensitivity to variations in the damage parameters.
Resumo:
The goal of this study is the multi-mode structural vibration control in the composite fin-tip of an aircraft. Structural model of the composite fin-tip with surface bonded piezoelectric actuators is developed using the finite element method. The finite element model is updated experimentally to reflect the natural frequencies and mode shapes accurately. A model order reduction technique is employed for reducing the finite element structural matrices before developing the controller. Particle swarm based evolutionary optimization technique is used for optimal placement of piezoelectric patch actuators and accelerometer sensors to suppress vibration. H{infty} based active vibration controllers are designed directly in the discrete domain and implemented using dSpace® (DS-1005) electronic signal processing boards. Significant vibration suppression in the multiple bending modes of interest is experimentally demonstrated for sinusoidal and band limited white noise forcing functions.
Resumo:
BTK-2, a 32 residue scorpion toxin initially identified in the venom of red Indian scorpion Mesobuthus tamulus was cloned, overexpressed and purified using Cytochrome 155 fusion protein system developed in our laboratory. The synthetic gene coding for the peptide was designed taking into account optimal codon usage by Escherichia coli. High expression levels of the fusion protein enabled facile purification of this peptide. The presence of disulfide bonded isomers, occurring as distinctly populated states even in the fusion protein, were separated by gel filtration chromatography. The target peptide was liberated from the host protein by Tev protease cleavage and subsequent purification was achieved using RP-HPLC methods. Reverse phase HPLC clearly showed the presence of at least two isomeric forms of the peptide that were significantly populated. The oxidative folding of BTK-2 was achieved under ambient conditions during the course of purification. Structural characterization of the two forms, by solution homonuclear and heteronuclear NMR methods, has shown that these two forms exhibit significantly different structural properties, and represent the natively folded and a "misfolded" form of the peptide. The formation of properly folded BTK-2 as a major fraction without the use of in vitro oxidative refolding methods clearly indicate the versatility of the Cytochrome b(5) fusion protein system for the efficient production of peptides for high resolution NMR studies.
Resumo:
An analytical investigation of the transverse shear wave mode tuning with a resonator mass (packing mass) on a Lead Zirconium Titanate (PZT) crystal bonded together with a host plate and its equivalent electric circuit parameters are presented. The energy transfer into the structure for this type of wave modes are much higher in this new design. The novelty of the approach here is the tuning of a single wave mode in the thickness direction using a resonator mass. First, a one-dimensional constitutive model assuming the strain induced only in the thickness direction is considered. As the input voltage is applied to the PZT crystal in the thickness direction, the transverse normal stress distribution induced into the plate is assumed to have parabolic distribution, which is presumed as a function of the geometries of the PZT crystal, packing mass, substrate and the wave penetration depth of the generated wave. For the PZT crystal, the harmonic wave guide solution is assumed for the mechanical displacement and electric fields, while for the packing mass, the former is solved using the boundary conditions. The electromechanical characteristics in terms of the stress transfer, mechanical impedance, electrical displacement, velocity and electric field are analyzed. The analytical solutions for the aforementioned entities are presented on the basis of varying the thickness of the PZT crystal and the packing mass. The results show that for a 25% increase in the thickness of the PZT crystal, there is ~38% decrease in the first resonant frequency, while for the same change in the thickness of the packing mass, the decrease in the resonant frequency is observed as ~35%. Most importantly the tuning of the generated wave can be accomplished with the packing mass at lower frequencies easily. To the end, an equivalent electric circuit, for tuning the transverse shear wave mode is analyzed.