162 resultados para Aluminium flux
Resumo:
The flux tube model offers a pictorial description of what happens during the deconfinement phase transition in QCD. The three-point vertices of a flux tube network lead to formation of baryons upon hadronization. Therefore, correlations in the baryon number distribution at the last scattering surface are related to the preceding pattern of the flux tube vertices in the quark-gluon plasma, and provide a signature of the nearby deconfinement phase transition. I discuss the nature of the expected signal, and how to extract it from the experimental data for heavy ion collisions at RHIC and LHC.
Resumo:
Accumulative roll bonding of two aluminium alloys, AA2219 and AA5086 was carried out up to 8 passes. During the course of ARB, the deformation inhomogeneity between the two alloy layers results in interfacial instability after the 4th pass, necking of the AA5086 layers after the 6th pass and fracture along the necked regions after the 7th and 8th pass. The EBSD analysis shows deformation bands along the interfaces after 8 passes of ARB. The ARB-processed materials predominantly show characteristic deformation texture components. The weak texture after the 2nd pass results from the combination of a weakly-textured starting AA2219 layer and a strongly-textured starting AA5086 layer. A strong deformation texture forms due to the high imposed strain after a higher number of ARB passes. Subgrain formation and related shear banding induces copper/S components in the case of the small elongated grains, while planar slip leads to the formation of brass component in the large elongated grains.
Resumo:
In the present work, the evolution of microstructure during solidification of A356 alloy under stirring is performed experimentally in a high temperature concentric viscometer. The stirring during solidification results a semisolid slurry in the annular space between the cylinders. This slurry is removed periodically during processing using a vacuum removal quartz tube and quenched in water for micrograph analysis. From the micrograph analysis, the shape, stacking arrangement and corresponding microstructural evolution of the suspended primary particles in the slurry are studied. The work also predicts the fraction of solid present in the extracted slurry. Finally, the effect of microstructure and the solid-fraction on the slurry viscosity is presented.
Resumo:
This paper discusses the use of Jason-2 radar altimeter measurements to estimate the Ganga-Brahmaputra surface freshwater flux into the Bay of Bengal for the period mid-2008 to December 2011. A previous estimate was generated for 1993-2008 using TOPEX-Poseidon, ERS-2 and ENVISAT, and is now extended using Jason-2. To take full advantages of the new availability of in situ rating curves, the processing scheme is adapted and the adjustments of the methodology are discussed here. First, using a large sample of in situ river height measurements, we estimate the standard error of Jason-2-derived water levels over the Ganga and the Brahmaputra to be respectively of 0.28 m and 0.19 m, or less than similar to 4% of the annual peak-to-peak variations of these two rivers. Using the in situ rating curves between water levels and river discharges, we show that Jason-2 accurately infers Ganga and Brahmaputra instantaneous discharges for 2008-2011 with mean errors ranging from similar to 2180 m(3)/s (6.5%) over the Brahmaputra to similar to 1458 m(3)/s (13%) over the Ganga. The combined Ganga-Brahmaputra monthly discharges meet the requirements of acceptable accuracy (15-20%) with a mean error of similar to 16% for 2009-2011 and similar to 17% for 1993-2011. The Ganga-Brahmaputra monthly discharge at the river mouths is then presented, showing a marked interannual variability with a standard deviation of similar to 12500 m(3)/s, much larger than the data set uncertainty. Finally, using in situ sea surface salinity observations, we illustrate the possible impact of extreme continental freshwater discharge event on the northern Bay of Bengal as observed in 2008.
Resumo:
Prediction of the Sun's magnetic activity is important because of its effect on space environment and climate. However, recent efforts to predict the amplitude of the solar cycle have resulted in diverging forecasts with no consensus. Yeates et al. have shown that the dynamical memory of the solar dynamo mechanism governs predictability, and this memory is different for advection- and diffusion-dominated solar convection zones. By utilizing stochastically forced, kinematic dynamo simulations, we demonstrate that the inclusion of downward turbulent pumping of magnetic flux reduces the memory of both advection- and diffusion-dominated solar dynamos to only one cycle; stronger pumping degrades this memory further. Thus, our results reconcile the diverging dynamo-model-based forecasts for the amplitude of solar cycle 24. We conclude that reliable predictions for the maximum of solar activity can be made only at the preceding minimum-allowing about five years of advance planning for space weather. For more accurate predictions, sequential data assimilation would be necessary in forecasting models to account for the Sun's short memory.
Resumo:
The compatibility of the fast-tachocline scenario with a flux-transport dynamo model is explored. We employ a flux-transport dynamo model coupled with simple feedback formulae relating the thickness of the tachocline to the amplitude of the magnetic field or to the Maxwell stress. The dynamo model is found to be robust against the nonlinearity introduced by this simplified fast-tachocline mechanism. Solar-like butterfly diagrams are found to persist and, even without any parameter fitting, the overall thickness of the tachocline is well within the range admitted by helioseismic constraints. In the most realistic case of a time-and latitude-dependent tachocline thickness linked to the value of the Maxwell stress, both the thickness and its latitudinal dependence are in excellent agreement with seismic results. In nonparametric models, cycle-related temporal variations in tachocline thickness are somewhat larger than admitted by helioseismic constraints; we find, however, that introducing a further parameter into our feedback formula readily allows further fine tuning of the thickness variations.
Resumo:
The solution of the forward equation that models the transport of light through a highly scattering tissue material in diffuse optical tomography (DOT) using the finite element method gives flux density (Phi) at the nodal points of the mesh. The experimentally measured flux (U-measured) on the boundary over a finite surface area in a DOT system has to be corrected to account for the system transfer functions (R) of various building blocks of the measurement system. We present two methods to compensate for the perturbations caused by R and estimate true flux density (Phi) from U-measured(cal). In the first approach, the measurement data with a homogeneous phantom (U-measured(homo)) is used to calibrate the measurement system. The second scheme estimates the homogeneous phantom measurement using only the measurement from a heterogeneous phantom, thereby eliminating the necessity of a homogeneous phantom. This is done by statistically averaging the data (U-measured(hetero)) and redistributing it to the corresponding detector positions. The experiments carried out on tissue mimicking phantom with single and multiple inhomogeneities, human hand, and a pork tissue phantom demonstrate the robustness of the approach. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE) DOI: 10.1117/1.JBO.18.2.026023]
Resumo:
In this paper, a numerical model for friction welding of thixo-cast materials is developed, which includes a coupling of thermal effect and plastic deformation using a finite element method (FEM). As the constitutive equations for flow behavior of materials for a thixo-cast material are expected to be different from those of conventionally cast material of the same alloy, the necessary material data are experimentally determined from isothermal hot compression tests of the A356 thixocast alloy. The Johnson-Cook model has been employed to represent the flow behavior of the thixocast A356 alloy. The purpose of this FEM analysis is to provide better understanding of the friction welding process of thixo-cast material, and to obtain optimized process parameters before an actual welding is carried out.
Resumo:
The growing commercial applications had brought aluminium oxide nanoparticles under,toxicologists' purview. In the present study, the cytotoxicity of two different sized aluminium oxide nanoparticles (ANP(1), mean hydrodynamic diameter 82.6 +/- 22 nm and ANP(2), mean hydrodynamic diameter 246.9 +/- 39 nm) towards freshwater algal isolate Chlorella ellipsoids at low exposure levels (<= 1 mu g/mL) using sterile lake water as the test medium was assessed. The dissolution of alumina nanoparticles and consequent contribution towards toxicity remained largely unexplored owing to its presumed insoluble nature. Herein, the leached Al3+ ion mediated toxicity has been studied along with direct particulate toxicity to bring out the dynamics of toxicity through colloidal stability, biochemical, spectroscopic and microscopic analyses. The mean hydrodynamic diameter increased with time both for ANP(1) 82.6 +/- 22 nm (0 h) to 246.3 +/- 59 nm (24h), to 1204 +/- 140 nm (72 h)] and ANP(2) 246.9 +/- 39 nm (Oh) to 368.28 +/- 48 nm (24 h), to 1225.96 +/- 186 nm (72 h)] signifying decreased relative abundance of submicron sized particles (<1000 nm). The detailed cytotoxicity assays showed a significant reduction in the viability dependent on dose and exposure. A significant increase in ROS and LDH levels were noted for both ANPs at 1 mu g/mL concentration. The zeta potential and FT-IR analyses suggested surface chemical interaction between nanoparticles and algal cells. The substantial morphological changes and cell wall damage were confirmed through microscopic analyses (SEM, TEM, and CLSM). At 72 h, significant Al3+ ion release in the test medium 0.092 mu g/mL for ANP(1), and 0.19 mu g/mL for ANP(2)] was noted, and the resulting suspension containing leached ions caused significant cytotoxicity, revealing a substantial ionic contribution. This study indicates that both the nano-size and ionic dissolution play a significant role in the cytotoxicity of ANPs towards freshwater algae, and the exposure period largely determines the prevalent mode of nano-toxicity.
Enhancing fluorescence signals from aluminium thin films and foils using polyelectrolyte multilayers
Resumo:
In this paper we investigate the application of polyelectrolyte multilayer (PEM) coated metal slides in enhancing fluorescence signal. We observed around eight-fold enhancement in fluorescence for protein incubated on PEM coated on aluminium mirror surface with respect to that of functionalized bare glass slides. The fluorescence intensities were also compared with commercially available FAST (R) slides (Whatman) offering 3D immobilization of proteins and the results were found to be comparable. We also showed that PEM coated on low-cost and commonly available aluminium foils also results in comparable fluorescence enhancement as sputtered aluminium mirrors. Immunoassay was also performed, using model proteins, on aluminium mirror as well as on aluminium foil based devices to confirm the activity of proteins. This work demonstrated the potential of PEMs in the large-scale, roll-to-roll manufacturing of fluorescence enhancements substrates for developing disposable, low-cost devices for fluorescence based diagnostic methods.
Resumo:
Aluminium and zinc are known to be the major triggering agents for aggregation of amyloid peptides leading to plaque formation in Alzheimer's disease. While zinc binding to histidine in A (amyloid ) fragments has been implicated as responsible for aggregation, not much information is available on the interaction of aluminium with histidine. In the NMR study of the N-terminal A fragments, DAEFRHDSGYEV (A12) and DAEFRHDSGYEVHHQK (A16) presented here, the interactions of the fragments with aluminium have been investigated. Significant chemical shifts were observed for few residues near the C-terminus when aluminium chloride was titrated with A12 and A16 peptides. Surprisingly, it is nonhistidine residues which seem to be involved in aluminium binding. Based on NMR constrained structure obtained by molecular modelling, aluminium-binding pockets in A12 were around charged residues such as Asp, Glu. The results are discussed in terms of native structure propagation, and the relevance of histidine residues in the sequences for metal-binding interactions. We expect that the study of such short amyloid peptide fragments will not only provide clues for plaque formation in aggregated conditions but also facilitate design of potential drugs for these targets.
Resumo:
We report selective optical reflectance in an aluminium (Al) coated flexible carbon nanotube (CNT) thin film over a wide range of wavelengths (500-2500 nm). Selective-wavelength surface is achieved by coating CNT surfaces with Al thin film that presented a maximum optical reflectivity of similar to 65% in the infrared region. However, CNT film alone showed a reflectance of 15-20% over a larger range of wavelengths without any structural modification, which has not been realized so far. Moreover, a tailorable reflectance in CNT is shown to be achieved by tuning various parameters, namely, the porosity of the material, angle of an incident light, and refractive index of the materials. Owing to higher infrared reflectivity and thermal diffusivity, Al coated CNT presents a potential for a high efficiency solar collector. (C) 2013 AIP Publishing LLC.
Resumo:
We propose that grand minima in solar activity are caused by simultaneous fluctuations in the meridional circulation and the Babcock-Leighton mechanism for the poloidal field generation in the flux transport dynamo model. We present the following results: (a) fluctuations in the meridional circulation are more effective in producing grand minima; (b) both sudden and gradual initiations of grand minima are possible; (c) distributions of durations and waiting times between grand minima seem to be exponential; (d) the coherence time of the meridional circulation has an effect on the number and the average duration of grand minima, with a coherence time of about 30 yr being consistent with observational data. We also study the occurrence of grand maxima and find that the distributions of durations and waiting times between grand maxima are also exponential, like the grand minima. Finally we address the question of whether the Babcock-Leighton mechanism can be operative during grand minima when there are no sunspots. We show that an alpha-effect restricted to the upper portions of the convection zone can pull the dynamo out of the grand minima and can match various observational requirements if the amplitude of this alpha-effect is suitably fine-tuned.
Resumo:
In the present investigation, the corrosive behaviour of Al 6061-TiN particulate composites prepared by liquid metallurgy has been studied in chloride medium using electroanalytical techniques such as Tafel, cyclic polarization and electrochemical impedance spectroscopy (EIS). Surface morphology of the sample electrodes was examined using scanning electron micrography and energy dispersive X-ray methods. X-ray diffraction technique was used to confirm inclusion of TiN particulates in the matrix alloy and identify the alloying elements and intermetallic compounds in the Al 6061 composites. Polarization studies indicate an increase in the corrosion resistance in composites compared to the matrix alloy. EIS study reveals that the polarization resistance (R (p)) increases with increase in TiN content in composites, thus confirming improved corrosion resistance in composites. The observed decrease in corrosion rate in the case of composites is due to decoupling between TiN particles and Al 6061 alloy. It is understood that after the initiation of corrosion, interfacial corrosion products may have decoupled the conducting ceramic TiN from Al 6061 matrix alloy thus eliminating the galvanic effect between them.
Resumo:
Rheological behavior of semi-solid slurries forms the backbone of semi-solid processing of metallic alloys. In particular, the effects of several process and metallurgical parameters such as shear rate, shear time, temperature, rest time and size, distribution and morphology of the primary phase on the viscosity of the slurry needs in-depth characterization. In the present work, rheological behaviour of the semisolid aluminium alloy (A356) slurry is investigated by using a high temperature Searle type Rheometer using concentric cylinders. Three different types of experiment are carried out: isothermal test, continuous cooling test and steady state test. Continuous decrease in viscosity is observed with increasing shear rate at a fixed temperature (isothermal test). It is also found that the viscosity increases with decreasing temperature for a particular shear rate due to increasing solid fraction (continuous cooling test). Thixotropic nature of the slurry is confirmed from the hysteresis loops obtained during experimentation. Time dependence of slurry viscosity has been evaluated from the steady state tests. After a longer shearing time under isothermal conditions the starting dendritic structure of the said alloy is transformed into globular grains due to abrasion, agglomeration, welding and ripening.