288 resultados para Agrobacterium-mediated transformation
Resumo:
An efficient user-friendly method of acylation of Grignard reagents to selectively synthesize ketones is presented, which is assisted by simple amides such as NMP, or DMF. The present chemoselective method tolerates a variety of functional groups such as ketone, ester, nitrile and other functional groups.
Resumo:
Nanostructured materials have attracted considerable interest in recent years due to their properties which differ strongly from their bulk phase and potential applications in nanoscale electronic and optoelectronic devices. Metal oxide nanostructures can be synthesized by variety of different synthesis techniques developed in recent years such as thermal decomposition, sol-gel technique, chemical coprecipitation, hydrothermal process, solvothermal process, spray pyrolysis, polyol process etc. All the above processes go through a tedious synthesis procedure followed by prolonged heat treatment at elevated temperature and are time consuming. In the present work we describe a rapid microwave irradiation-assisted chemical synthesis technique for the growth of nanoparticles, nanorods, and nanotubes of a variety of metal oxides in the presence of an appropriate surfactant, without the use of any templates The method is simple, inexpensive, and helps one to prepare nanostructures in a very simple way, and in a very short time, measured in minutes. The synthesis procedure employs high quality metalorganic complexes (typically -diketonates) featuring a direct metal-to-oxygen bond in its molecular structure. The complex is dissolved in a suitable solvent, often with a surfactant added, and the solution then subjected to microwave irradiation in a domestic microwave oven operating at 2.45 GHz frequency with power varying from 160-800 W, from a few seconds to a few minutes, leading to the formation of corresponding metal oxides. This method has been used successfully to synthesize nanostructures of a variety of binary and ternary metal oxides such as ZnO, CdO, Fe2O3, CuO, Ga2O3, Gd2O3, ZnFe2O4, etc. There is an observed variation in the morphology of the nanostructures with the change of different parameters such as microwave power, irradiation time, appropriate solvent, surfactant type and concentration. Cationic, anionic, nonionic and polymeric surfactants have been used to generate a variety of nanostructures. Even so, to remove the surfactant, there is either no need of heat treatment or a very brief exposure to heat suffices, to yield highly pure and crystalline oxide materials as prepared. By adducting the metal complexes, the shape of the nanostructures can be controlled further. In this manner, very well formed, single-crystalline, hexagonal nanorods and nanotubes of ZnO have been formed. Adducting the zinc complex leads to the formation of tapered ZnO nanorods with a very fine tip, suitable for electron emission applications. Particle size and their monodispersity can be controlled by a suitable choice of a precursor complex, the surfactant, and its concentration. The resulting metal oxide nanostructures have been characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, FTIR spectroscopy, photoluminescence, and electron emission measurements.
Resumo:
Maltose binding protein (MBP) is a large, monomeric two domain protein containing 370 amino acids. In the absence of denaturant at neutral pH, the protein is in the native state, while at pH 3.0 it forms a molten globule. The molten globule lacks a tertiary circular dichroism signal but has secondary structure similar to that of the native state. The molten globule binds 8-anilino-1-naphthalene sulfonate (ANS). The unfolding thermodynamics of MBP at both pHs were measured by carrying out a series of isothermal urea melts at temperatures ranging from 274–329 K. At 298 K, values of [Delta]G°, [Delta]Cp, and Cm were 3.1 ± 0.2 kcal mol−1, 5.9 ± 0.8 kcal mol−1 K−1 (15.9 cal (mol-residue)−1 K−1), and 0.8 M, respectively, at pH 3.0 and 14.5 ± 0.4 kcal mol−1, 8.3 ± 0.7 kcal mol−1 K−1 (22.4 kcal (mol-residue)−1 K−1), and 3.3 M, respectively, at pH 7.1. Guanidine hydrochloride denaturation at pH 7.1 gave values of [Delta]G° and [Delta]Cp similar to those obtained with urea. The m values for denaturation are strongly temperature dependent, in contrast to what has been previously observed for small globular proteins. The value of [Delta]Cp per mol-residue for the molten globule is comparable to corresponding values of [Delta]Cp for the unfolding of typical globular proteins and suggests that it is a highly ordered structure, unlike molten globules of many small proteins. The value of [Delta]Cp per mol-residue for the unfolding of the native state is among the highest currently known for any protein.
Resumo:
Dendritic cells (DCs) as sentinels of the immune system are important for eliciting both primary and secondary immune responses to a plethora of microbial pathogens. Cooperative stimulation of a complex set of pattern-recognition receptors, including TLR2 and nucleotide-binding oligomerization domain (NOD)-like receptors on DCs, acts as a rate-limiting factor in determining the initiation and mounting of the robust immune response. It underscores the need for ``decoding'' these multiple receptor interactions. In this study, we demonstrate that TLR2 and NOD receptors cooperatively regulate functional maturation of human DCs. Intriguingly, synergistic stimulation of TLR2 and NOD receptors renders enhanced refractoriness to TGF-beta- or CTLA-4-mediated impairment of human DC maturation. Signaling perturbation data suggest that NOTCH1-PI3K signaling dynamics assume critical importance in TLR2- and NOD receptor-mediated surmounting of CTLA-4- and TGF-beta -suppressed maturation of human DCs. Interestingly, the NOTCH1-PI3K signaling axis holds the capacity to regulate DC functions by virtue of PKC delta-MAPK-dependent activation of NF-kappa B. This study provides mechanistic and functional insights into TLR2-and NOD receptor-mediated regulation of DC functions and unravels NOTCH1-PI3K as a signaling cohort for TLR2 and NOD receptors. These findings serve in building a conceptual foundation for the design of improved strategies for adjuvants and immunotherapies against infectious diseases.
Resumo:
Analysis of the serpentine folded-waveguide slow-wave structure was carried out using elliptical conformal transformation, for the dispersion and interaction impedance characteristics of the structure. The results obtained from the present analysis were compared with those from 3D electromagnetic simulation using MAFIA.
Resumo:
Competition among weak intermolecular interactions can lead to polymorphism, the appearance of various crystalline forms of a substance with comparable cohesive energies. The crystal structures of 2-fluorophenylacetylene (2FPA) and 3-fluorophenylacetylene (3FPA), both of which are liquids at ambient conditions, have been determined by in situ cryocrystallization. Both compounds exhibit dimorphs, with one of the forms observed in common, P2(1), Z = 2 and the other form being Pna2(1), Z = 4 for 2FPA and P2(1)/c, Z = 12 for 3FPA. Variations in the crystal structures of the dimorphs of each of these compounds arise from subtle differences in the way in which weak intermolecular interactions such as C-H center dot center dot center dot pi and C-H center dot center dot center dot F are manifested. The interactions involving ``organic'' fluorine, are entirely different from those in the known structure of 4-fluorophenylacetylene (4FPA), space group P2(1)/c, Z = 4. The commonalities and differences in these polymorphs of 2FPA and 3FPA have been analyzed in terms of supramolecular synthons and extended long-range synthon aufbau module (LSAM) patterns. These structures are compared with the three polymorphs of phenylacetylene, in terms of the T-shaped C-H center dot center dot center dot pi interaction, a feature common to all these structures.
Resumo:
In this work, the incubation period for the onset of sphalerite to wurtzite transformation in isolated ZnS nanoparticles 2 to 7 nm in size was determined via the in situ isothermal annealing of as-synthesized sphalerite nanoparticles in a transmission electron microscope (TEM). Nanoparticles sitting on the TEM grid were well separated from each other in order to minimize particle sintering during the annealing operation. The phase transformation onset was observed at 300 degrees C, 350 degrees C, and 400 degrees C after 90, 10, and 4 min, respectively. These time-temperature data for the phase transformation onset were then used to calculate the activation energy for the nucleation of the wurtzite phase in 2 to 7 nm sphalerite particles. The activation energy determined was 24 Kcal/mol. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3622625]
Resumo:
An enantiospecific synthesis of the angular triquinane system present in the sesquiterpenes cameroonanes and silphiperfolanes has been accomplished, starting from 5-isopropenyl-2-methylcyclopent-1-ene-1-methanol [readily available in three steps from (R)-limonene] employing an intramolecular rhodium carbenoid insertion into the C-H bond of a tertiary methyl group for the construction of the triquinane system.
Resumo:
Phase transformation behaviour of amorphous electroless Ni-B coating with a targeted composition of Ni-6wt% B is characterized in conjunction with microstructural development and hardness. Microscopic observations of the as-deposited coating display a novel microstructure which is already phase separated at multiple length scales. Spherical colonies of similar to 5 mu m consist of 2-3 mu m nodular regions which are surrounded by similar to 2-3 mu m region that contains fine bands ranging from 10 to 70 nm in width. The appearance of three crystalline phases in this binary system at different stages of heat treatment and the concomitant variation in hardness are shown to arise from nanoscale fluctuations in the as-deposited boron content from 4 to 8 wt%. High temperature annealing reveals continuous crystallization up to 430 degrees C, overlapping with the domain of B loss due to diffusion into the substrate. The implications of such a microstructure for optimal heat treatment procedures are discussed. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In the present study, the synthesis and characterization of a series of N-methylimidazole-based thiourea and selenourea derivatives are described. The new compounds were also studied for their ability to inhibit peroxynitrite (PN)- and peroxidase-mediated nitration of protein tyrosine residues. It has been observed that the selenourea derivatives are more efficient than the thiourea-based compounds in the inhibition of protein nitration. The higher activity of selenoureas as compared to that of the corresponding thioureas can be ascribed to the zwitterionic nature of the selenourea moiety. Single crystal X-ray diffraction studies on some of the thiourea and selenourea derivatives reveal that the C S bonds in thioureas possess more of double bond character than the C=Se bonds in the corresponding selenoureas. Therefore, the selenium compounds can react with PN or hydrogen peroxide much faster than their sulfur analogues. The reactions of thiourea and selenourea derivatives with PN or hydrogen peroxide produce the corresponding sulfinic or seleninic acid derivatives, which upon elimination of sulfurous/selenous acids produce the corresponding N-methylimdazole derivatives.
Resumo:
We report the shape evolution of free gold agglomerates with different morphologies that transform to ellipsoidal and then to spherical shapes during the heating cycle. The shape transformation is associated with a structural transition from polycrystalline to single crystalline. The structural transition temperature is shown to be dependent on the final size of the particles and not on the initial morphologies of the agglomerates. It is also shown that the transition occurs well below the melting temperature which is in contrast with the melt-freeze process reported in the literature.
Resumo:
A novel size dependent FCC (face-centered-cubic) -> HCP (hexagonally-closed-pack) phase transformation and stability of an initial FCC zirconium nanowire are studied. FCC zirconium nanowires with cross-sectional dimensions < 20 are found unstable in nature, and they undergo a FCC -> HCP phase transformation, which is driven by tensile surface stress induced high internal compressive stresses. FCC nanowire with cross-sectional dimensions > 20 , in which surface stresses are not enough to drive the phase transformation, show meta-stability. In such a case, an external kinetic energy in the form of thermal heating is required to overcome the energy barrier and achieve FCC -> HCP phase transformation. The FCC-HCP transition pathway is also studied using Nudged Elastic Band (NEB) method, to further confirm the size dependent stability/metastability of Zr nanowires. We also show size dependent critical temperature, which is required for complete phase transformation of a metastable-FCC nanowire.