227 resultados para protein C activator
Resumo:
A sensitive dimerization assay for DNA binding proteins has been developed using gene fusion technology. For this purpose, we have engineered a gene fusion using protein A gene of Staphylococcus aureus and C gene, the late gene transactivator of bacteriophage Mu. The C gene was fused to the 3' end of the gene for protein A to generate an A- C fusion. The overexpressed fusion protein was purified in a single step using immunoglobulin affinity chromatography. Purified fusion protein exhibits DNA binding activity as demonstrated by electrophoretic mobility shift assays. When the fusion protein A-C was mixed with C and analyzed for DNA binding, in addition to C and A-C specific complexes, a single intermediate complex comprising of a heterodimer of C and A-C fusion proteins was observed. Further, the protein A moiety in the fusion protein A-C does not contribute to DNA binding as demonstrated by proteolytic cleavage and circular dichroism (CD) analysis. The assay has also been applied to analyze the DNA binding domain of C protein by generating fusions between protein A and N- and C-terminal deletion mutants of C. The results indicate a role for the region towards the carboxy terminal of the protein in DNA binding. The general applicability of this method is discussed.
Resumo:
Transactivator protein C is required for the expression of bacteriophage Mu late genes from lys, I, P and mom promoters during lytic life cycle of the phage. The mechanism of transcription activation of mom gene by C protein is well understood. C activates transcription at Pmom by initial unwinding of the promoter DNA, thereby facilitating RNA polymerase (RNAP) recruitment. Subsequently, C interacts with the (sic) subunit of RNAP to enhance promoter clearance. The mechanism by which C activates other late genes of the phage is not known. We carried out promoter-polymerase interaction studies with all the late gene promoters to determine the individual step of C mediated activation. Unlike at P-mom, at the other three promoters, RNAP recruitment and closed complex formation are not C dependent. Instead, the action of C at P-lys, P-I, and P-P is during the isomerization from closed complex to open complex with no apparent effect at other steps of initiation pathway. The mechanism of transcription activation of mom and other late promoters by their common activator is different. This distinction in the mode of activation (promoter recruitment and escape versus isomerization) by the same activator at different promoters appears to be important for optimized expression of each of the late genes.
Resumo:
Transactivator protein C of bacteriophage mu is essential for the transition from middle to late gene expression during the phage life cycle. The unusual, multistep activation of mom promoter (Pmom) by C protein involves activator-mediated promoter unwinding to recruit RNA polymerase and subsequent enhanced promoter clearance of the enzyme. To achieve this, C binds its site overlapping the -35 region of the mom promoter with a very high affinity, in Mg2+-dependent fashion. Mg2+-mediated conformational transition in C is necessary for its DNA binding and transactivation. We have determined the residues in C which coordinate Mg2+, to induce allosteric transition in the protein, required for the specific interaction with DNA. Residues E26 and D40 in the putative metal binding motif (E26X10D37X2D40) present toward the N-terminus of the protein are found to be important for Mg2+ ion binding. Mutations in these residues lead to altered Mg2+-induced conformation, compromised DNA binding, and reduced levels of transcription activation. Although Mg2+ is widely used in various DNA transaction reactions, this report provides the first insights on the importance of the metal ion-induced allosteric transitions in regulating transcription factor function.
Resumo:
Mycobacterium leprae is closely related to Mycobacterium tuberculosis, yet causes a very different illness. Detailed genomic comparison between these two species of mycobacteria reveals that the decaying M. leprae genome contains less than half of the M. tuberculosis functional genes. The reduction of genome size and accumulation of pseudogenes in the M. leprae genome is thought to result from multiple recombination events between related repetitive sequences, which provided the impetus to investigate the recombination-like activities of RecA protein. In this study, we have cloned, over-expressed and purified M. leprae RecA and compared its activities with that of M. tuberculosis RecA. Both proteins, despite being 91% identical at the amino acid level, exhibit strikingly different binding profiles for single-stranded DNA with varying GC contents, in the ability to catalyze the formation of D-loops and to promote DNA strand exchange. The kinetics and the extent of single-stranded DNA-dependent ATPase and coprotease activities were nearly equivalent between these two recombinases. However, the degree of inhibition exerted by a range of ATP:ADP ratios was greater on strand exchange promoted by M. leprae RecA compared to its M. tuberculosis counterpart. Taken together, our results provide insights into the mechanistic aspects of homologous recombination and coprotease activity promoted by M. lepare RecA, and further suggests that it differs from the M. tuberculosis counterpart. These results are consistent with an emerging concept of DNA-sequence influenced structural differences in RecA nucleoprotein filaments and how these differences reflect on the multiple activities associated with RecA protein. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In peptide and protein structures, occurrence of (phi,psi.) angles in the disallowed region of the Ramachandran map almost always suggests local regions of error or poor accuracy. However, very rarely genuine disallowed conformations occur as noted in the current study in proteins of known structure available at ultra-high resolution (<= 1.2 (A) over circle). In the current work, extent of conservation of genuine disallowed conformations in homologous proteins of known structures has been analyzed. From a dataset of 124 protein domain families, with structure of at least one constituent member in each family available at a resolution of 1.2 (A) over circle or better, we have analyzed the conservation of 221 disallowed conformations. It is observed that the disallowed conformation is only moderately conservedin protein domain families. In the gross dataset no particular residue type adopting disallowed conformation elicit high conservation of residue type though there are alignment positions in the dataset with complete conservation of both the residue type and the disallowed conformation. Conserved disallowed conformation in protein domain families play biologically significant role in roughly 50% of the cases. The residues with the disallowed conformation or its flanking residues are often located within or around the functional site of the protein. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
We demonstrate the utility of the surface-enhanced Raman spectroscopy (SERS) to monitor conformational transitions in protein upon ligand binding. The changes in protein's secondary and tertiary structures were monitored using amide and aliphatic/aromatic side chain vibrations. Changes in these bands are suggestive of the stabilization of the secondary and tertiary structure of transcription activator protein C in the presence of Mg2+ ion, whereas the spectral fingerprint remained unaltered in the case of a mutant protein, defective in Mg2+ binding. The importance of the acidic residues in Mg2+ binding, which triggers an overall allosteric transition in the protein, is visualized in the molecular model. The present study thus opens up avenues toward the application of SERS as a potential tool for gaining structural insights into the changes occurring during conformational transitions in proteins.
Resumo:
Backbone conformations at 1064 asparaginyl residues in 123 non-homologous, high-resolution X-ray structures of proteins were analysed. Asn adopts conformations in left-handed x-helical region and other partially allowed regions in the Ramachandran map more readily than any other non-glycyl residue. Asn conformational clusters in the (phi,psi) regions of left-handed alpha-helix, right-handed alpha-helix and extended (beta) strands were investigated in detail for their occurrence in various secondary structures, especially in beta-turn regions. Preferences were observed for Asn conformations in different positions in various beta-turn types, including the first and fourth positions of the turn. Asparaginyl residues with extended conformations are found to occur frequently in irregular regions, although they are expected to occur predominantly in extended strands or in the third position of type II beta-turns. Asn conformations at the N-cap positions of helices strongly prefer extended conformation than alpha(L), which seems to be characteristic of non-glycyl residues at that position. In the linkers connecting two extended strands and those connecting an alpha-helix and an extended strand, Asn with alpha(L) or alpha(R) conformation is more favoured than Asn with the beta-conformation. Analysis of Asn-Asn doublets and Asn-X-Asn triplets permitted identification of conformational families in such sequences. Results of this investigation provide useful hints in modelling Asn-rich regions in proteins such as malaria parasite coat protein. (C) Munksgaard 1994.
Resumo:
Metallophosphoesterase-domain-containing protein 2 (MPPED2) is a highly evolutionarily conserved protein with orthologs found from worms to humans. The human MPPED2 gene is found in a region of chromosome 11 that is deleted in patients with WAGR (Wilms tumor, aniridia, genitourinary anomalies, and mental retardation) syndrome, and MPPED2 may function as a tumor suppressor. However, the precise cellular roles of MPPED2 are unknown, and its low phosphodiesterase activity suggests that substrate hydrolysis may not be its prime function. We present here the structures of MPPED2 and two mutants, which show that the poor activity of MPPED2 is not only a consequence of the substitution of an active-site histidine residue by glycine but also due to binding of AMP or GMP to the active site. This feature, enhanced by structural elements of the protein, allows MPPED2 to utilize the conserved phosphoprotein-phosphatase-like fold in a unique manner, ensuring that its enzymatic activity can be combined with a possible role as a scaffolding or adaptor protein. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Cargo transport through the nuclear pore complex continues to be a subject of considerable interest to experimentalists and theorists alike. Several recent studies have revealed details of the process that have still to be fully understood, among them the apparent nonlinearity between cargo size and the pore crossing time, the skewed, asymmetric nature of the distribution of such crossing times, and the non-exponentiality in the decay profile of the dynamic autocorrelation function of cargo positions. In this paper, we show that a model of pore transport based on subdiffusive particle motion is in qualitative agreement with many of these observations. The model corresponds to a process of stochastic binding and release of the particle as it moves through the channel. It suggests that the phenylalanine-glycine repeat units that form an entangled polymer mesh across the channel may be involved in translocation, since these units have the potential to intermittently bind to hydrophobic receptor sites on the transporter protein. (C) 2011 American Institute of Physics. [doi:10.1063/1.3651100]
Resumo:
Abrin from Abrus precatorius plant is a potent protein synthesis inhibitor and induces apoptosis in cells. However, the relationship between inhibition of protein synthesis and apoptosis is not well understood. Inhibition of protein synthesis by abrin can lead to accumulation of unfolded protein in the endoplasmic reticulum causing ER stress. The observation of phosphorylation of eukaryotic initiation factor 2 alpha and upregulation of CHOP (CAAT/enhancer binding protein (C/EBP) homologous protein), important players involved in ER stress signaling by abrin, suggested activation of ER stress in the cells. ER stress is also known to induce apoptosis via stress kinases such as p38 MAPK and JNK. Activation of both the pathways was observed upon abrin treatment and found to be upstream of the activation of caspases. Moreover, abrin-induced apoptosis was found to be dependent on p38 MAPK but not JNK. We also observed that abrin induced the activation of caspase-2 and caspase-8 and triggered Bid cleavage leading to mitochondrial membrane potential loss and thus connecting the signaling events from ER stress to mitochondrial death machinery.
Resumo:
Cytosolic heat shock protein 90 (Hsp90) has been shown to be essential for many infectious pathogens and is considered a potential target for drug development. In this study, we have carried out biochemical characterization of Hsp90 from a poorly studied protozoan parasite of clinical importance, Entamoeba histolytica. We have shown that Entamoeba Hsp90 can bind to both ATP and its pharmacological inhibitor, 17-AAG (17-allylamino-17-demethoxygeldanamycin), with K-d values of 365.2 and 10.77 mu M, respectively, and it has a weak ATPase activity with a catalytic efficiency of 4.12 x 10(-4) min(-1) mu M-1. Using inhibitor 17-AAG, we have shown dependence of Entamoeba on Hsp90 for its growth and survival. Hsp90 function is regulated by various co-chaperones. Previous studies suggest a lack of several important co-chaperones in E. histolytica. In this study, we describe the presence of a novel homologue of co-chaperone Aha1 (activator of Hsp90 ATPase), EhAha1c, lacking a canonical Aha1 N-terminal domain. We also show that EhAha1c is capable of binding and stimulating ATPase activity of EhHsp90. In addition to highlighting the potential of Hsp90 inhibitors as drugs against amoebiasis, our study highlights the importance of E. histolytica in understanding the evolution of Hsp90 and its co-chaperone repertoire. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Background: The number of available structures of large multi-protein assemblies is quite small. Such structures provide phenomenal insights on the organization, mechanism of formation and functional properties of the assembly. Hence detailed analysis of such structures is highly rewarding. However, the common problem in such analyses is the low resolution of these structures. In the recent times a number of attempts that combine low resolution cryo-EM data with higher resolution structures determined using X-ray analysis or NMR or generated using comparative modeling have been reported. Even in such attempts the best result one arrives at is the very course idea about the assembly structure in terms of trace of the C alpha atoms which are modeled with modest accuracy. Methodology/Principal Findings: In this paper first we present an objective approach to identify potentially solvent exposed and buried residues solely from the position of C alpha atoms and amino acid sequence using residue type-dependent thresholds for accessible surface areas of C alpha. We extend the method further to recognize potential protein-protein interface residues. Conclusion/Significance: Our approach to identify buried and exposed residues solely from the positions of C alpha atoms resulted in an accuracy of 84%, sensitivity of 83-89% and specificity of 67-94% while recognition of interfacial residues corresponded to an accuracy of 94%, sensitivity of 70-96% and specificity of 58-94%. Interestingly, detailed analysis of cases of mismatch between recognition of interface residues from C alpha positions and all-atom models suggested that, recognition of interfacial residues using C alpha atoms only correspond better with intuitive notion of what is an interfacial residue. Our method should be useful in the objective analysis of structures of protein assemblies when positions of only C alpha positions are available as, for example, in the cases of integration of cryo-EM data and high resolution structures of the components of the assembly.
Resumo:
Background: Stabilization strategies adopted by proteins under extreme conditions are very complex and involve various kinds of interactions. Recent studies have shown that a large proportion of proteins have their N- and C-terminal elements in close contact and suggested they play a role in protein folding and stability. However, the biological significance of this contact remains elusive. Methodology: In the present study, we investigate the role of N- and C-terminal residue interaction using a family 10 xylanase (BSX) with a TIM-barrel structure that shows stability under high temperature,alkali pH, and protease and SDS treatment. Based on crystal structure,an aromatic cluster was identified that involves Phe4, Trp6 and Tyr343 holding the Nand C-terminus together; this is a unique and important feature of this protein that might be crucial for folding and stabilityunder poly-extreme conditions. Conclusion: A series of mutants was created to disrupt this aromatic cluster formation and study the loss of stability and function under given conditions. While the deletions of Phe4 resulted in loss of stability, removal of Trp6 and Tyr343 affected in vivo folding and activity. Alanine substitution with Phe4, Trp6 and Tyr343 drastically decreased stability under all parameters studied. Importantly,substitution of Phe4 with Trp increased stability in SDS treatment.Mass spectrometry results of limited proteolysis further demonstrated that the Arg344 residue is highly susceptible to trypsin digestion in sensitive mutants such as DF4, W6A and Y343A, suggesting again that disruption of the Phe4-Trp6-Tyr343 (F-W-Y) cluster destabilizes the N-and C-terminal interaction. Our results underscore the importance of N- and C-terminal contact through aromatic interactions in protein folding and stability under extreme conditions, and these results may be useful to improve the stability of other proteins under suboptimal conditions.
Resumo:
In order to identify the functionally relevant epitopes on chicken riboflavin carrier protein, we have raised monoclonal antibodies to the vitamin carrier. One of these, 6B2C12, was found to interact specifically with a synthetic oligopeptide corresponding to the C-terminal 17 amino acid residues of the chicken egg white riboflavin carrier protein, which is missing in part in the egg yolk riboflavin carrier protein. This epitope is conserved through evolution in mammals including humans. Administration of the ascites fluid of 6B2C12 to pregnant mice intraperitoneally, resulted in the termination of pregnancy indicating that this epitope is involved in or closely associated with the transplacental transport of the vitamin from the maternal circulation to the growing fetus.