157 resultados para nanoscale bainite


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report three prominent observations made on the nanoscale charge ordered ( CO) manganites RE(1-x)AE(x)MnO(3) (RE = Nd, Pr; AE = Ca; x = 0.5) probed by temperature dependent magnetization and magneto-transport, coupled with electron magnetic/paramagnetic resonance spectroscopy (EMR/EPR). First, evidence is presented to show that the predominant ground state magnetic phase in nanoscale CO manganites is ferromagnetic and it coexists with a residual anti-ferromagnetic phase. Secondly, the shallow minimum in the temperature dependence of the EPR linewidth shows the presence of a charge ordered phase in nanoscale manganites which was shown to be absent from the DC static magnetization and transport measurements. Thirdly, the EPR linewidth, reflective of spin dynamics, increases significantly with a decrease of particle size in CO manganites. We discuss the interesting observations made on various samples of different particle sizes and give possible explanations. We have shown that EMR spectroscopy is a highly useful technique to probe the 'hindered charge ordered phase' in nanoscale CO manganites, which is not possible by static DC magnetization and transport measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A technique to quantify in real time the microstructural changes occurring during mechanical nanoscale fatigue of ultrathin surface coatings has been developed. Cyclic nanoscale loading, with amplitudes less than 100 nm, is achieved with a mechanical probe miniaturized to fit inside a transmission electron microscope (TEM). The TEM tribological probe can be used for nanofriction and nanofatigue testing, with 3D control of the loading direction and simultaneous TEM imaging of the nano-objects. It is demonstrated that fracture of 10-20 nm thick amorphous carbon films on sharp gold asperities, by a single nanoscale shear impact, results in the formation of < 10 nm diameter amorphous carbon filaments. Failure of the same carbon films after cyclic nanofatigue, however, results in the formation of carbon nanostructures with a significant degree of graphitic ordering, including a carbon onion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electronic, magnetic, or structural inhomogeneities ranging in size from nanoscopic to mesoscopic scales seem endemic and are possibly generic to colossal magnetoresistance manganites and other transition metal oxides. They are hence of great current interest and understanding them is of fundamental importance. We show here that an extension, to include long-range Coulomb interactions, of a quantum two-fluid l-b model proposed recently for manganites [Phys. Rev. Lett. 92, 157203 (2004)] leads to an excellent description of such inhomogeneities. In the l-b model two very different kinds of electronic states, one localized and polaronic (l) and the other extended or broad band (b) coexist. For model parameters appropriate to manganites and even within a simple dynamical mean-field theory (DMFT) framework, it describes many of the unusual phenomena seen in manganites, including colossal magnetoresistance (CMR), qualitatively and quantitatively. However, in the absence of long-ranged Coulomb interaction, a system described by such a model would actually phase separate, into macroscopic regions of l and b electrons, respectively. As we show in this paper, in the presence of Coulomb interactions, the macroscopic phase separation gets suppressed and instead nanometer scale regions of polarons interspersed with band electron puddles appear, constituting a kind of quantum Coulomb glass. We characterize the size scales and distribution of the inhomogeneity using computer simulations. For realistic values of the long-range Coulomb interaction parameter V-0, our results for the thresholds for occupancy of the b states are in agreement with, and hence support, the earlier approach mentioned above based on a configuration averaged DMFT treatment which neglects V-0; but the present work has features that cannot be addressed in the DMFT framework. Our work points to an interplay of strong correlations, long-range Coulomb interaction, and dopant ion disorder, all inevitably present in transition metal oxides as the origin of nanoscale inhomogeneities rather than disorder frustrated phase competition as is generally believed. As regards manganites, it argues against explanations for CMR based on disorder frustrated phase separation and for an intrinsic origin of CMR. Based on this, we argue that the observed micrometer (meso) scale inhomogeneities owe their existence to extrinsic causes, e.g., strain due to cracks and defects. We suggest possible experiments to validate our speculation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the destabilization of the charge ordered insulating (COI) state in a localized region of Pr0.63Ca0.37MnO3 single crystal by current injection using a scanning tunneling microscope tip. This leads to controlled phase separation and formation of localized metallic nanoislands in the COI matrix which have been detected by local tunneling conductance mapping. The metallic regions thus created persist even after reducing the injected current to lower values. The original conductance state can be restored by injecting a current of similar magnitude but of opposite polarity. We thus achieve reversible nanoscale phase separation that gives rise to the possibility to "write, read, and erase" nanosized conducting regions in an insulating matrix with high spatial resolution. (c) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Creating nanoscale heterostructures with molecular-scale (<2 nm) metal wires is critical for many applications and remains a challenge. Here, we report the first time synthesis of nanoscale heterostructures with single-crystal molecular-scale Au nanowires attached to different nanostructure substrates. Our method involves the formation of Au nanoparticle seeds by the reduction of rocksalt AuCl nanocubes heterogeneously nucleated on the Substrates and subsequent nanowire growth by oriented attachment of Au nanoparticles from the Solution phase. Nanoscale heterostructures fabricated by such site-specific nucleation and growth are attractive for many applications including nanoelectronic device wiring, catalysis, and sensing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we first present the 'wet N2O' furnace oxidation process to grow nitrided tunnel oxides in the thickness range 6 to 8 nm on silicon at a temperature of 800 degrees C. Electrical characteristics of MOS capacitors and MOSFETs fabricated using this oxide as gate oxide have been evaluated and the superior features of this oxide are ascertained The frequency response of the interface states, before and after subjecting the MOSFET gate oxide to constant current stress, is studied using a simple analytical model developed in this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocomposites of Al?In, Al?Pb, and Zn?Pb have been prepared and characterized using rapid quenching techniques and the nature of superconducting transitions in them has been studied by resistivity measurements. The precipitated second phases (In and Pb) have particle sizes (d) of a few tens of nanometers such that ?0?d?dmin, where ?0 is the superconducting zero temperature coherence length and dmin is the minimum particle size that supports superconductivity. The onset of superconductivity generally starts in samples with d??0 and progressively other grains with d??0 become superconducting. We suggest that the proximity effect of the matrix plays a significant role. In an Al?In system, even with 40?wt.% In, the zero resistivity state is obtained at T?1.33 times the Tc of Al. But in Al?Pb and Zn?Pb, the zero resistivity state is obtained at T?4 and 5 times the Tc of Al and Zn with only 10�15 wt?% Pb, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Significant progress has been made in the fabrication of micron and sub-micron structures whose motion can be controlled in liquids under ambient conditions. The aim of many of these engineering endeavors is to be able to build and propel an artificial micro-structure that rivals the versatility of biological swimmers of similar size, e. g. motile bacterial cells. Applications for such artificial ``micro-bots'' are envisioned to range from microrheology to targeted drug delivery and microsurgery, and require full motion-control under ambient conditions. In this Mini-Review we discuss the construction, actuation, and operation of several devices that have recently been reported, especially systems that can be controlled by and propelled with homogenous magnetic fields. We describe the fabrication and associated experimental challenges and discuss potential applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semiconductor based nanoscale heterostructures are promising candidates for photocatalytic and photovoltaic applications with the sensitization of a wide bandgap semiconductor with a narrow bandgap material being the most viable strategy to maximize the utilization of the solar spectrum. Here, we present a simple wet chemical route to obtain nanoscale heterostructures of ZnO/CdS without using any molecular linker. Our method involves the nucleation of a Cd-precursor on ZnO nanorods with a subsequent sulfidation step leading to the formation of the ZnO/CdS nanoscale heterostructures. Excellent control over the loading of CdS and the microstructure is realized by merely changing the initial concentration of the sulfiding agent. We show that the heterostructures with the lowest CdS loading exhibit an exceptionally high activity for the degradation of methylene blue (MB) under solar irradiation conditions; microstructural and surface analysis reveals that the higher activity in this case is related to the dispersion of the CdS nanoparticles on the ZnO nanorod surface and to the higher concentration of surface hydroxyl species. Detailed analysis of the mechanism of formation of the nanoscale heterostructures reveals that it is possible to obtain deterministic control over the nature of the interfaces. Our synthesis method is general and applicable for other heterostructures where the interfaces need to be engineered for optimal properties. In particular, the absence of any molecular linker at the interface makes our method appealing for photovoltaic applications where faster rates of electron transfer at the heterojunctions are highly desirable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoparticles of Ag-Pd and Gu-Pd alloys with diameters in the 5-40 nm range have been prepared over the entire range of compositions, by employing the heterogeneous reaction of dry methanol or ethanol with intimate mixtures of AgNO3+PdOx and CuOx+PdOx, respectively. The nanoscale alloys have been characterized by energy-dispersive Xray (EDX) analysis, transmission electron microscopy (TEM) and X-ray diffraction (XRD). All the alloy particles possess the fee structure and can be obtained in bulk quantities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid solidification techniques can be used to produce the embedded nanoparticles in a desired matrix. The origin and morphology of these small particles and their transformation behaviour are still not fully understood. In this paper, we discuss the issues involved and present some interesting results in Al-Pb-In and Cu-Fe-Si systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the formation of an amorphous phase in nanosized Pi particles embedded in an Al-based glassy alloy matrix. High-resolution electron microscopy (HREM) has been used to show that the particles contain crystalline and amorphous portions. A depression of the melting point by more than 100 K of the crystalline portion of the Pi particles was found by differential scanning calorimetric studies and by in-situ electron microscopy using a heating stage. The same techniques established the absence of an amorphous phase in the particles when the matrix is crystallized. It is shown that the formation of the amorphous phase and the depression of the melting point cannot be explained by the pressure developed by the volume change during solidification in this constrained system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In-situ transmission electron microscopy (TEM) has developed rapidly over the last decade. In particular, with the inclusion of scanning probes in TEM holders, allows both mechanical and electrical testing to be performed whilst simultaneously imaging the microstructure at high resolution. In-situ TEM nanoindentation and tensile experiments require only an axial displacement perpendicular to the test surface. However, here, through the development of a novel in-situ TEM triboprobe, other surface characterisation experiments are now possible, with the introduction of a fully programmable 3D positioning system. Programmable lateral displacement control allows scratch tests to be performed at high resolution with simultaneous imaging of the changing microstructure. With the addition of repeated cyclic movements, both nanoscale fatigue and friction experiments can also now be performed. We demonstrate a range of movement profiles for a variety of applications, in particular, lateral sliding wear. The developed NanoLAB TEM triboprobe also includes a new closed loop vision control system for intuitive control during positioning and alignment. It includes an automated online calibration to ensure that the fine piezotube is controlled accurately throughout any type of test. Both the 3D programmability and the closed loop vision feedback system are demonstrated here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have explored the mechanism of spin-torque-driven domain-wall (DW) depinning in cylindrical nanowires of nickel using noise in electrical resistance. We find that the spectral slope of noise is a sensitive probe to the DW kinetics that reveals a creeplike behavior of the DWs at the depinning threshold, and diffusive DW motion at higher spin-torque drive. Different regimes of DW kinetics were characterized by universal kinetic exponents.