72 resultados para diagrama triangular


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the equilibrium properties of the nearest-neighbor Ising antiferromagnet on a triangular lattice in the presence of a staggered field conjugate to one of the degenerate ground states. Using a mapping of the ground states of the model without the staggered field to dimer coverings on the dual lattice, we classify the ground states into sectors specified by the number of "strings." We show that the effect of the staggered field is to generate long-range interactions between strings. In the limiting case of the antiferromagnetic coupling constant J becoming infinitely large, we prove the existence of a phase transition in this system and obtain a finite lower bound for the transition temperature. For finite J, we study the equilibrium properties of the system using Monte Carlo simulations with three different dynamics. We find that in all the three cases, equilibration times for low-field values increase rapidly with system size at low temperatures. Due to this difficulty in equilibrating sufficiently large systems at low temperatures, our finite-size scaling analysis of the numerical results does not permit a definite conclusion about the existence of st phase transition for finite values of J. A surprising feature in the system is the fact that unlike usual glassy systems; a zero-temperature quench almost always leads to the ground state, while a slow cooling does not.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the results of an extensive mean-field investigation of the half-filled Hubbard model on a triangular lattice at zero temperature. At intermediate U we find a first-order metal-insulator transition from an incommensurate spiral magnetic metal to a semiconducting state with a commensurate linear spin density wave ordering stabilized by the competition between the kinetic energy and the frustrated nature of the magnetic interaction. At large U the ground state is that of a classical triangular antiferromagnet within our approximation. In the incommensurate spiral metallic phase the Fermi surface has parts in which the wave function renormalization Z is extremely small. The evolution of the Fermi surface and the broadening of the quasi-particle band along with the variation of the plasma frequency and a charge stiffness constant with U/t are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents simulation and experimental studies on the characterization of ultra wideband antennas for imaging applications. Various configurations of antennas were simulated for their time and frequency domain characteristics with special emphasis on flat responses for group delay and gain versus frequency. Parametric studies reported here showed that locating the capacitive feed strip near the vertex of the triangle gave better response in these respects. An antenna with operating frequency from 2.9GHz to 4.1GHz was fabricated and measured.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kinetically frustrated bosons at half filling in the presence of a competing nearest-neighbor repulsion support a wide supersolid regime on the two-dimensional triangular lattice. We study this model on a two-leg ladder using the finite-size density-matrix renormalization-group method, obtaining a phase diagram which contains three phases: a uniform superfluid (SF), an insulating charge density wave (CDW) crystal, and a bond ordered insulator (BO). We show that the transitions from SF to CDW and SF to BO are continuous in nature, with critical exponents varying continuously along the phase boundaries, while the transition from CDW to BO is found to be first order. The phase diagram is also found to contain an exactly solvable Majumdar Ghosh point, and reentrant SF to CDW phase transitions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spin dependent Falicov-Kimball model (FKM) is studied on a triangular lattice using numerical diagonalization technique and Monte-Carlo simulation algorithm. Magnetic properties have been explored for different values of parameters: on-site Coulomb correlation U, exchange interaction J and filling of electrons. We have found that the ground state configurations exhibit long range Neel order, ferromagnetism or a mixture of both as J is varied. The magnetic moments of itinerant (d) and localized U) electrons are also studied. For the one-fourth filling case we found no magnetic moment from d- and f-electrons for U less than a critical value. `.2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work investigates the mixed convective flow and heat transfer characteristics past a triangular cylinder placed symmetrically in a vertical channel. At a representative Reynolds number, Re = 100, simulations are carried out for the blockage ratios beta = 1/3; 1/4; and 1/6. Effect of aiding and opposing buoyancy is brought about by varying the Richardson number in the range -1.0 <= Ri <= 1.0. At a blockage ratio of 1/3, suppression of vortex shedding is found at Ri = 1, whereas von Karman vortex street is seen both at beta = 1/4 and 1/6, respectively. This is the first time that such behavior of blockage ratio past a triangular cylinder in the present flow configuration is reported. Drag coefficient increases progressively with increasing Ri and a slightly higher value is noticed at beta = 1/3. For all b, heat transfer increases with increasing Ri. Flattening of Nu(avg)-Ri curve beyond Ri > 0: 75 is observed at beta = 1/3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ground state magnetic properties are studied by incorporating the super-exchange interaction (J(se)) in the spin-dependent Falicov-Kimball model (FKM) between localized (f-) electrons on a triangular lattice for half filled case. Numerical diagonalization and Monte-Carlo simulation are used to study the ground state magnetic properties. We have found that the magnetic moment of (d-) and (f-) electrons strongly depend on the value of Hund's exchange (J), super-exchange interaction (J(se)) and also depends on the number of (d-) electrons (N-d). The ground state changes from antiferromagnetic (AFM) to ferromagnetic (FM) state as we decrease (N-d). Also the density of d electrons at each site depends on the value of J and J(se).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ground state magnetic properties of the spin-dependent Falicov-Kimball model (FKM) are studied by incorporating the intrasite exchange correlation J (between itinerant d- and localized f-electrons) and intersite (superexchange) correlation J (between localized f-electrons) on a triangular lattice for two different fillings. Numerical diagonalization and Monte-Carlo techniques are used to determine the ground state magnetic properties. Transitions from antiferromagnetic to ferromagnetic and again to re-entrant antiferromagnetic phase is observed in a wide range of parameter space. The magnetic moments of d- and f-electrons are observed to depend strongly on the value off, J and also on the total number of d-electrons (N-d). (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research studies on plasmonic properties of triangular-shaped silver nanoparticles might lead to several interesting applications. However, in this work, triangular-shaped silver nanoparticles have been synthesized by simple solvothermal technique and reported the effect of size on the electron-phonon scattering in the synthesized materials by analyzing their temperature-dependent photoluminescence (PL) emission characteristics. It has been observed that total integrated PL emission intensity is quenched by 33 % with the increase in temperature from 278 to 323 K. The observed decrease in PL emission intensity has been ascribed to the increase of electron-phonon scattering rate with the increase in temperature. The values of electron-phonon coupling strength (S) for synthesized samples have been evaluated by theoretical fitting of the experimentally obtained PL emission data. Smaller sized triangular nanoparticle has been found to exhibit stronger temperature dependence in PL emission, which strongly suggests that smaller sized triangular silver nanostructures have better electron-phonon coupling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The floating-zone method with different growth ambiences has been used to selectively obtain hexagonal or orthorhombic DyMnO3 single crystals. The crystals were characterized by x-ray powder diffraction of ground specimens and a structure refinement as well as electron diffraction. We report magnetic susceptibility, magnetization and specific heat studies of this multiferroic compound in both the hexagonal and the orthorhombic structure. The hexagonal DyMnO3 shows magnetic ordering of Mn3+ (S = 2) spins on a triangular Mn lattice at T-N(Mn) = 57 K characterized by a cusp in the specific heat. This transition is not apparent in the magnetic susceptibility due to the frustration on the Mn triangular lattice and the dominating paramagnetic susceptibility of the Dy3+ (S = 9/2) spins. At T-N(Dy) = 3 K, a partial antiferromagnetic order of Dy moments has been observed. In comparison, the magnetic data for orthorhombic DyMnO3 display three transitions. The data broadly agree with results from earlier neutron diffraction experiments, which allows for the following assignment: a transition from an incommensurate antiferromagnetic ordering of Mn3+ spins at T-N(Mn) = 39 K, a lock-in transition at Tlock-in = 16 K and a second antiferromagnetic transition at T-N(Dy) = 5 K due to the ordering of Dy moments. Both the hexagonal and the orthorhombic crystals show magnetic anisotropy and complex magnetic properties due to 4f-4f and 4f-3d couplings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The floating-zone method with different growth ambiences has been used to selectively obtain hexagonal or orthorhombic DyMnO3 single crystals. The crystals were characterized by x-ray powder diffraction of ground specimens and a structure refinement as well as electron diffraction. We report magnetic susceptibility, magnetization and specific heat studies of this multiferroic compound in both the hexagonal and the orthorhombic structure. The hexagonal DyMnO3 shows magnetic ordering of Mn3+ (S = 2) spins on a triangular Mn lattice at T-N(Mn) = 57 K characterized by a cusp in the specific heat. This transition is not apparent in the magnetic susceptibility due to the frustration on the Mn triangular lattice and the dominating paramagnetic susceptibility of the Dy3+ (S = 9/2) spins. At T-N(Dy) = 3 K, a partial antiferromagnetic order of Dy moments has been observed. In comparison, the magnetic data for orthorhombic DyMnO3 display three transitions. The data broadly agree with results from earlier neutron diffraction experiments, which allows for the following assignment: a transition from an incommensurate antiferromagnetic ordering of Mn3+ spins at T-N(Mn) = 39 K, a lock-in transition at Tlock-in = 16 K and a second antiferromagnetic transition at T-N(Dy) = 5 K due to the ordering of Dy moments. Both the hexagonal and the orthorhombic crystals show magnetic anisotropy and complex magnetic properties due to 4f-4f and 4f-3d couplings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lasers are very efficient in heating localized regions and hence they find a wide application in surface treatment processes. The surface of a material can be selectively modified to give superior wear and corrosion resistance. In laser surface-melting and welding problems, the high temperature gradient prevailing in the free surface induces a surface-tension gradient which is the dominant driving force for convection (known as thermo-capillary or Marangoni convection). It has been reported that the surface-tension driven convection plays a dominant role in determining the melt pool shape. In most of the earlier works on laser-melting and related problems, the finite difference method (FDM) has been used to solve the Navier Stokes equations [1]. Since the Reynolds number is quite high in these cases, upwinding has been used. Though upwinding gives physically realistic solutions even on a coarse grid, the results are inaccurate. McLay and Carey have solved the thermo-capillary flow in welding problems by an implicit finite element method [2]. They used the conventional Galerkin finite element method (FEM) which requires that the pressure be interpolated by one order lower than velocity (mixed interpolation). This restricts the choice of elements to certain higher order elements which need numerical integration for evaluation of element matrices. The implicit algorithm yields a system of nonlinear, unsymmetric equations which are not positive definite. Computations would be possible only with large mainframe computers.Sluzalec [3] has modeled the pulsed laser-melting problem by an explicit method (FEM). He has used the six-node triangular element with mixed interpolation. Since he has considered the buoyancy induced flow only, the velocity values are small. In the present work, an equal order explicit FEM is used to compute the thermo-capillary flow in the laser surface-melting problem. As this method permits equal order interpolation, there is no restriction in the choice of elements. Even linear elements such as the three-node triangular elements can be used. As the governing equations are solved in a sequential manner, the computer memory requirement is less. The finite element formulation is discussed in this paper along with typical numerical results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimentally measured average velocities through plateau borders of stationary cellular foam, when compared with those calculated with the assumption of rigid Plateau Border walls, show that the assumption of rigid walls severely underestimates the velocities. An analysis of the situation wherein plateau border walls have velocities, as decided by the surface viscosity of the system, is presented here. The plateau border is idealized as a pipe of equilateral triangular cross-section with vertices of the triangle having zero velocity. The pertinent form of Navier-Stoke's equations with inhomogeneous boundary conditions and its solution through a procedure of successive approximations is presented in dimensionless form. The solution reduces to the known solution of slow steady flow through a triangular pipe, when surface viscosity is infinite. Results indicate that the assumption of rigid plateau border walls is valid only when value of the inverse of dimensionless surface viscosity is less than 0.044. Beyond that the assumption severely underestimates the flow and the effect of nonrigidity of the wall must be considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current-potential relationships are derived for small-amplitude periodic inputs for linear electrochemical systems using a Fourier synthesis procedure. Specific results have been obtained for a triangular potential waveform for two simple model systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Topology-based methods have been successfully used for the analysis and visualization of piecewise-linear functions defined on triangle meshes. This paper describes a mechanism for extending these methods to piecewise-quadratic functions defined on triangulations of surfaces. Each triangular patch is tessellated into monotone regions, so that existing algorithms for computing topological representations of piecewise-linear functions may be applied directly to the piecewise-quadratic function. In particular, the tessellation is used for computing the Reeb graph, a topological data structure that provides a succinct representation of level sets of the function.