83 resultados para critical aggregation concentration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The temperature dependence of the critical micelle concentration (CMC) and a closed-loop coexistence curve are obtained, via Monte Carlo simulations, in the water surfactant limit of a two-dimensional version of a statistical mechanical model for micro-emulsions, The CMC and the coexistence curve reproduce various experimental trends as functions of the couplings. In the oil-surfactant limit, there is a conventional coexistence cure with an upper consolute point that allows for a region of three-phase coexistence between oil-rich, water-rich and microemulsion phases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The critical micelle concentration (CMC) of several surfactants that contain an NLO chromophore, either at the hydrocarbon tail, or at the hydrophilic headgroup, or even as a counterion, was determined by hyper-Rayleigh scattering (HRS). In all cases, the HRS signal exhibited a similar variation with surfactant concentration, wherein the CMC is inferred from a rather unprecedented drop in the signal intensity. This drop is attributed to the formation of small pre-micellar aggregates, whose concentrations become negligible above CMC. In addition, a probe molecule, which upon protonation yielded a species with significantly enhanced HRS intensity, was developed and its utility for the determination of the CIVIC of simple fatty acids was demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aggregation property of multiheaded surfactants has been investigated by constant pressure molecular dynamics (MD) simulation in aqueous medium. The model multiheaded surfactants contain more than one headgroup (x = 2, 3, and 4) for a single tail group. This increases the hydrophilic charge progressively over the hydrophobic tail which has dramatic consequences in the aggregation behavior. In particular, we have looked at the change in the aggregation property such as critical micellar concentration (cmc), aggregation number, and size of the micelles for the multiheaded surfactants in water. We find with increasing number of headgroups of the Multiheaded surfactants that the cmc values increase and the aggregation numbers as well as the size of the micelles decrease. These trends are in agreement with the experimental findings as reported earlier with x = 1, 2, and 3. We also predict the aggregation properties of multiheaded surfactant With four headgroups (x = 4) for which no experimental studies exist yet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthesis, aggregation behavior and in vitro cholesterol solubilization studies of 16-epi-pythocholic acid (3 alpha,12 alpha,16 beta-trihydroxy-5 beta-cholan-24-oic acid, EPCA) are reported. The synthesis of this unnatural epimer of pythocholic acid (3 alpha,12 alpha,16 alpha-trihydroxy-5 beta-cholan-24-oic acid, PCA) involves a series of simple and selective chemical transformations with an overall yield of 21% starting from readily available cholic acid (CA). The critical micellar concentration (CMC) of 16-epi-pythocholate in aqueous media was determined using pyrene as a fluorescent probe. In vitro cholesterol solubilization ability was evaluated using anhydrous cholesterol and results were compared with those of other natural di-and trihydroxy bile acids. These studies showed that 16-epi-pythocholic acid (16 beta-hydroxy-deoxycholic acid) behaves similar to cholic acid (CA) and avicholic acid (3 alpha,7 alpha,16 alpha-trihydroxy-5 beta-cholan-24-oic acid, ACA) in its aggregation behavior and cholesterol dissolution properties. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Taurine conjugates of two cholic acid derived oligomers with different spacers between the cholic acid units were synthesized. These molecules self-assemble in aqueous media. The critical micelle concentration (CMC) values were measured by using fluorescence spectroscopic analysis and the aggregates were characterized by dynamic light scattering and electron microscopy. The cooperativity of the cholic acid units in these tetramers to solubilize cholesterol was investigated. The ability of these molecules to act as nanocarriers for liphophilic dyes was also studied.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Planar imidazolium cation based gemini surfactants 16-Im-n-Im-16], 2Br(-) (where n = 2, 3, 4, 5, 6, 8, 10, and 12), exhibit different morphologies and internal packing arrangements by adopting different supramolecular assemblies in aqueous media depending on their number of spacer methylene units (CH2)(n). Detailed measurements of the small-angle neutron-scattering (SANS) cross sections from different imidazolium-based surfactant micelles in aqueous media (D2O) are reported. The SANS data, containing the information of aggregation behavior of such surfactants in the molecular level, have been analyzed on the basis of the Hayter and Penfold model for the macro ion solution to compute the interparticle structure factor S(Q) taking into account the screened Coulomb interactions between the dimeric surfactant micelles. The characteristic changes in the SANS spectra of the dimeric surfactant with n = 4 due to variation of temperature have also been investigated. These data are then compared with the SANS characterization data of the corresponding gemini micelles containing tetrahedral ammonium ion based polar headgroups. The critical micellar concentration of each surfactant micelle (cmc) has been determined using pyrene as an extrinsic fluorescence probe. The variation of cmc as a function of spacer chain length has been explained in terms of conformational variation and progressive looping of the spacer into the micellar interior upon increasing the n values. Small-angle neutron-scattering (SANS) cross sections from different mixed micelles composed of surfactants with ammonium headgroups, 16-A(0), 16-Am-n-Am-16], 2Br(-) (where n = 4), 16-I-0, and 16-Im-n-Im-16], 2Br(-) (where n = 4), in aqueous media (D2O) have also been analyzed. The aggregate composition matches with that predicted from the ideal mixing model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pseudomonas maltophilia CSV89, a soil bacterium, produces an extracellular biosurfactant, ''Biosur-Pm''. The partially purified product is nondialyzable and chemically composed of 50% protein and 12-15% sugar, which indicates the complex nature of Biosur-Pm. It reduces the surface tension of water from 73 to 53 x 10(-3) N m(-1) and has a critical micellar concentration of 80 mg/l. Compared to aliphatic hydrocarbons, Biosur-Pm shows good activity against aromatic hydrocarbons. The emulsion formed is stable and does not require any metal ions for emulsification. The kinetics of Biosur-Pm production suggest that its synthesis isa growth-associated and pH-dependent process. At pH 7.0, cells produced more Biosur-Pm with less cell surface hydrophobicity. At pH 8.0, however, the cells produced less Biosur-Pm with more cell surface hydrophobicity and showed a twofold higher affinity for aromatic hydrocarbons compared to the cells grown at pH 7.0. The Biosur-Pm showed a pH-dependent release, stimulated growth of the producer strain on mineral salts medium with 1-naphthoic acid when added externally, and facilitated the conversion of salicylate to catechol. All these results suggest that Biosur-Pm is probably a cell-wall component and helps in hydrocarbon assimilation/uptake.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cationic surfactants such as dodecyltrimethylammonium bromide (DTAB), tetradecyltrimehtylammonium bromide (TTAB) and hexadecyltrimethylammonium bromide (HTAB); and anionic surfactants such as sodium decyl sulphate (SDeS), sodium dodecyl sulphate (SDS) and sodium tetradecyl sulphate (STDS) have been used to determine their solubility and micellization in ternary eutectic melt (acetamide + urea + ammonium nitrate) at 50 degrees C. We employed the electrical conductivity and the surface tension measurement techniques to determine the critical micelle concentration (CMC). The deviation in the slope of the specific conductance/surface tension against surfactant concentration plots indicated the aggregations of surfactants and hence, their CMC. CMC decreases with increase of alkyl chain length due to the increased van der Waals forces. The calculated increment in Gibb's energy per methylene group for cationic and anionic surfactants is about -6 kJ mol(-1) and -4 kJ mol(-1) respectively. It is found that, the CMCs of the surfactants in the ternary melt are higher than the CMCs of same surfactants in water (similar to 25 degrees C). (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The concentration of a nonionic surfactant and water pH were varied in an oil-in-water emulsion to minimize the friction coefficient between a steel ball sliding on a steel flat. At a surfactant concentration near the CMC (critical micelle concentration) the oil droplet size was found to be minimum. In this paper we study the microstructure of the surfactant molecules self-assembled on the steel substrate in water to comment on the ability of the surfactant aggregate to attract and retain oil. We find that a near semicylindrical hemimiceller microstructure with hydrocarbon tails projecting into bulk water as obtained at CMC in near neutral water is best able to capture and retain oil in yielding a low coefficient of friction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The binding of the fluorescent probes 1-anilino-8-naphthalene sulfonate and dansyl cadaverine to the sodium salts of cholic, deoxycholic and dehydrocholic acids has been investigated. Enhanced probe solubilisation accompanies aggregation. Monitoring of fluorescence intensities as a function of bile salt concentration permits the detection of primary micelle formation, as well as secondary association. The transition concentrations obtained by fluorescence are in good agreement with values determined for the critical micelle concentrations, by other methods. Differences in the behaviour of cholate and deoxycholate have been noted. Fluorescence polarisation studies of 1,6-diphenyl-1,3,5-hexatriene solubilised in bile salt micelles suggest a higher microviscosity for the interior of the deoxycholate micelle as compared to cholate. 1H NMR studies of deoxycholate over the range 1–100 mg/ml suggest that micelle formation leads to a greater immobilisation of the C18 and C19 methyl groups as compared to the C21 methyl group. Well resolved 13C resonances are observed for all three steroids even at high concentration. Both fluorescence and NMR studies confirm that dehydrocholate does not aggregate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Peptide NH chemical shifts and their temperature dependences have been monitored as a function of concentration for the decapeptide, Boc-Aib-Pro-Val-Aib-Val-Ala-Aib-Ala-Aib-Aib-OMe in CDCl3 (0.001-0.06M) and (CD3)2SO (0.001-0.03M). The chemical shifts and temperature coefficients for all nine NH groups show no significant concentration dependence in (CD3)2SO. Seven NH groups yield low values of temperature coefficients over the entire range, while one yields an intermediate value. In CDCl3, the Aib(1) NH group shows a large concentration dependence of both chemical shift and temperature coefficient, in contrast to the other eight NH groups. The data suggest that in (CD3)2SO, the peptide adopts a 310 helical conformation and is monomeric over the entire concentration range. In CDCl3, the 310 helical peptide associates at a concentration of 0.01M, with the Aib(1) NH involved in an intermolecular hydrogen bond. Association does not disrupt the intramolecular hydrogen-bonding pattern in the decapeptide.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effects of multiwalled carbon nanotubes (MWNTs) on the concentration fluctuations, interfacial driven elasticity, phase morphology, and local segmental dynamics of chains for near-critical compositions of polystyrene/poly(vinyl to methyl ether) (PS/PVME) blends were systematically investigated using dynamic shear rheology and dielectric spectroscopy. The contribution of the correlation length (xi) of the concentration fluctuations to the evolving stresses was monitored in situ to probe the different stages of demixing in the blends. The classical upturn in the dynamic moduli was taken as the rheological demixing temperature (T-rheo), which was also observed to be in close agreement with those obtained using concentration fluctuation variance, <(delta phi)(2)>, versus temperature curves. Further, Fredrickson and Larson's approach involving the mean-field approximation and the double-reptation self-concentration (DRSC) model was employed to evaluate the spinodal decomposition temperature (T-s). Interestingly, the values of both T-rheo and T-s shifted upward in the blends in the presence of MWNTs, manifesting in molecular-level miscibility. These phenomenal changes were further observed to be a function of the concentration of MWNTs. The evolution of morphology as a function of temperature was studied using polarized optical microscopy (POM). It was observed that PVME, which evolved as an interconnected network during the early stages of demixing, coarsened into a matrix-droplet morphology in the late stages. The preferential wetting of PVME onto MWNTs as a result of physicochemical interactions retained the interconnected network of PVME for longer time scales, as supported by POM and atomic force microscopy (AFM) images. Microscopic heterogeneity in macroscopically miscible systems was studied by dielectric relaxation spectroscopy. The slowing of segmental relaxations in PVME was observed in the presence of both ``frozen'' PS and MWNTs interestingly at temperatures much below the calorimetric glass transition temperature (T-g). This phenomenon was observed to be local rather than global and was addressed by monitoring the evolution of the relaxation spectra near and above the demixing temperature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The localization and dispersion quality of as received NH2 terminated multiwall carbon nanotubes (MWNT-I) and ethylene diamine (EDA) functionalized MWNTs in melt mixed blends of polycarbonate ( PC) and poly(styrene-co-acrylonitrile) (SAN) were assessed in this study using rheo-electrical and electromagnetic interference (EMI) shielding measurements. In order to improve the dispersion quality and also to selectively localize MWNTs in the PC phase of the blends, EDA was grafted onto MWNTs by two different strategies like diazonium reaction of the para-substituted benzene ring of MWNTs with EDA ( referred to as MWNT-II) and acylation of carboxyl functionalized MWNTs with thionyl chloride ( referred to as MWNT-III). By this approach we could systematically vary the concentration of NH2 functional groups on the surface of MWNTs at a fixed concentration (1 wt%) in PC/SAN blends. XPS was carried to evaluate the % concentration of N in different MWNTs and was observed to be highest for MWNT-III manifesting in a large surface coverage of EDA on the surface of MWNTs. Viscoelastic properties and melt electrical conductivities were measured to assess the dispersion quality of MWNTs using a rheo-electrical set-up both in the quiescent as well as under steady shear conditions. Rheological properties revealed chain scission of PC in the presence of MWNT-III which is due to specific interactions between EDA and PC leading to smaller PC grafts on the surface of MWNTs. The observed viscoelastic properties in the blends were further correlated with the phase morphologies under quiescent and annealed conditions. Electromagnetic interference (EMI) shielding effectiveness in X and K-u-band frequencies were measured to explore these composites for EMI shielding applications. Interestingly, MWNT-II showed the highest electrical conductivity and EMI shielding in the blends.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The near-critical behavior of the susceptibility deduced from light-scattering measurements in a ternary liquid mixture of 3-methylpyridine, water, and sodium bromide has been determined. The measurements have been performed in the one-phase region near the lower consolute points of samples with different concentrations of sodium bromide. A crossover from Ising asymptotic behavior to mean-field behavior has been observed. As the concentration of sodium bromide increases, the crossover becomes more pronounced, and the crossover temperature shifts closer to the critical temperature. The data are well described by a model that contains two independent crossover parameters. The crossover of the susceptibility critical exponent γ from its Ising value γ=1.24 to the mean-field value γ=1 is sharp and nonmonotonic. We conclude that there exists an additional length scale in the system due to the presence of the electrolyte which competes with the correlation length of the concentration fluctuations. An analogy with crossover phenomena in polymer solutions and a possible connection with multicritical phenomena is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoporous structures with high active surface areas are critical for a variety of applications. Here, we present a general templateless strategy to produce such porous structures by controlled aggregation of nanostructured subunits and apply the principles for synthesizing nanoporous Pt for electrocatalytic oxidation of methanol. The nature of the aggregate produced is controlled by tuning the electrostatic interaction between surfactant-free nanoparticles in the solution phase. When the repulsive force between the particles is very large, the particles are stabilized in the solution while instantaneous aggregation leading to fractal-like structures results when the repulsive force is very low. Controlling the repulsive interaction to an optimum, intermediate value results in the formation of compact structures with very large surface areas. In the case of Pt, nanoporous clusters with an extremely high specific surface area (39 m(2)/g) and high activity for methanol oxidation have been produced. Preliminary investigations indicate that the method is general and can be easily extended to produce nanoporous structures of many inorganic materials.