97 resultados para Water flow rate
Resumo:
The mass flow rate, (m) over dot, associated with the lateral outflow of dry, cohesionless granular material through circular orifices of diameter D made in vertical walls of silos was measured experimentally in order to determine also the influence of the wall thickness of the silo, w. Geometrical arguments, based on the outflow happening, are given in order to have a general correlation for (m) over dot embracing both quantities, D and w. The angle of repose appears to be an important characterization factor in these kinds of flows.
Resumo:
HfO2 thin films deposited on Si substrate using electron beam evaporation, are evaluated for back-gated graphene transistors. The amount of O-2 flow rate, during vaporation is optimized for 35 nm thick HfO2 films, to achieve the best optical, chemical and electrical properties. It has been observed that with increasing oxygen flow rate, thickness of the films increased and refractive index decreased due to increase in porosity resulting from the scattering of the evaporant. The films deposited at low O-2 flow rates (1 and 3 SCCM) show better optical and compositional properties. The effects of post-deposition annealing and post-metallization annealing in forming gas ambience (FGA) on the optical and electrical properties of the films have been analyzed. The film deposited at 3 SCCM O-2 flow rate shows the best properties as measured on MOS capacitors. To evaluate the performance of device properties, back-gated bilayer graphene transistors on HfO2 films deposited at two O-2 flow rates of 3 and 20 SCCM have been fabricated and characterized. The transistor with HfO2 film deposited at 3 SCCM O-2 flow rate shows better electrical properties consistent with the observations on MOS capacitor structures. This suggests that an optimum oxygen pressure is necessary to get good quality films for high performance devices.
Resumo:
In secondary steelmaking, the enhancement of the reaction rate in the low carbon period during the decarburization of steel is considered the most effective method to produce ultralow carbon steel. In a previous study, it was revealed that the surface reaction is dominant during the final stage of the actual refining process. In order to improve the surface reaction rate, it is necessary to enlarge the reaction region, which is usually achieved by increasing the plume eye area. In this study, water model experiments were carried out to estimate the influence of bottom stirring conditions on the gas-liquid reaction rate; for this purpose, the deoxidation rate during the bottom bubbling process was measured. Five types of nozzle configurations were used to study the effect of the plume eye area on the reaction rate at various gas flow rates. The results reveal that the surface reaction rate is influenced by the gas flow rate and the plume eye area. An empirical correlation was developed for the reaction rate and the plume eye area. This correlation was applied to estimate the gas-liquid reaction rate mat the bath surface.
Resumo:
A microcontroller based, thermal energy meter cum controller (TEMC) suitable for solar thermal systems has been developed. It monitors solar radiation, ambient temperature, fluid flow rate, and temperature of fluid at various locations of the system and computes the energy transfer rate. It also controls the operation of the fluid-circulating pump depending on the temperature difference across the solar collector field. The accuracy of energy measurement is +/-1.5%. The instrument has been tested in a solar water heating system. Its operation became automatic with savings in electrical energy consumption of pump by 30% on cloudy days.
Resumo:
The present work is based on four static molds using nozzles of different port diameter, port angle, and immersion depth. It has been observed that the meniscus is wavy. The wave amplitude shows a parabolic variation with the nozzle exit velocity. The dimensionless amplitude is found to vary linearly with the Froude number. Vortex formation and bubble entrainment by the wave occurs at the meniscus beyond a critical flow rate, depending upon the nozzle configuration, immersion depth, and the mold aspect ratio.
The Behaviour of Two-Phase Flow of DNAPL and Water through a Fractured Rock under Confining Pressure
Resumo:
This study presents the characterization of DNAPL and water flow in a fracture under confining pressure. A comprehensive mathematical model and the conditions under which DNAPL will enter an initially water-saturated deforming rock fracture are discussed. A numerical model with which to predict the quantity of each phase in terms of their saturations in deforming rock joint is developed. The effect of varying confining stresses on the traverse time of DNAPL across a fractured aquitard is studied. The sensitivity analysis for physical and hydraulic properties like initial fracture apertures, fracture dips, equivalent fracture aperture and confining pressures are performed and discussed.
Resumo:
The ladle constitutes a crucial element in the pouring system for developing process consistency and quality in the manufacture of castings. Flow of molten metal from T-spout ladles, with the spout projecting at an angle from the shell of the ladle, was investigated by simulation, modeling and analysis. This was followed by experimental validation for water flow in translucent models, and verification in a cast iron foundry. Key parameters in the design of a ladle (for its geometry) have been identified as the ladle size, spout diameter and its angle. Velocity and flow rate from a T-spout ladle are governed by and increase with increase in angle of tilt apart from the aforementioned design parameters. Cross section and profile of the issuing jet displaying a stable twisting pattern, during its free-fall of model fluid water and molten metal iron, are notable aspects in the design of the ladle, particularly the spout exit.
Resumo:
In steel refining process, an increase of interfacial area between the metal and slag through the metal droplets emulsified into the slag, so-called ``metal emulsion'', is one prevailing view for improving the reaction rate. The formation of metal emulsion was experimentally evaluated using Al-Cu alloy as metal phase and chloride salt as slag phase under the bottom bubbling condition. Samples were collected from the center of the salt phase in the container. Large number of metal droplets were separated from the salt by dissolving it into water. The number, surface area, and weight of the droplets increased with the gas flow rate and have local maximum values. The formation and sedimentation rates of metal droplets were estimated using a mathematical model. The formation rate increased with the gas flow rate and has a local maximum value as a function of gas flow rate, while the sedimentation rate is independent of the gas flow rate under the bottom bubbling condition. Three types of formation mode of metal emulsion, which occurred by the rupture of metal film around the bubble, were observed using high speed camera. During the process, an elongated column covered with metal film was observed with the increasing gas flow rate. This elongated column sometimes reached to the top surface of the salt phase. In this case, it is considered that fine droplets were not formed and in consequence, the weight of metal emulsion decreased at higher gas flow rate.
Resumo:
A fully developed pulsatile flow in a circular rigid tube is analysed by a microcontinuum approach. Solutions for radial variation of axial velocity and cell rotational velocity across the tube are obtained using the momentum integral method. Simplified forms of the solutions are presented for the relevant physiological data. Marked deviations in the results are observed when compared to a Newtonian fluid model. It is interesting to see that there is sufficient reduction in the mass flow rate, phase lag and friction due to the micropolar character of the fluid.
Resumo:
In this paper, we present results on water flow past randomly textured hydrophobic surfaces with relatively large surface features of the order of 50 µm. Direct shear stress measurements are made on these surfaces in a channel configuration. The measurements indicate that the flow rates required to maintain a shear stress value vary substantially with water immersion time. At small times after filling the channel with water, the flow rates are up to 30% higher compared with the reference hydrophilic surface. With time, the flow rate gradually decreases and in a few hours reaches a value that is nearly the same as the hydrophilic case. Calculations of the effective slip lengths indicate that it varies from about 50 µm at small times to nearly zero or “no slip” after a few hours. Large effective slip lengths on such hydrophobic surfaces are known to be caused by trapped air pockets in the crevices of the surface. In order to understand the time dependent effective slip length, direct visualization of trapped air pockets is made in stationary water using the principle of total internal reflection of light at the water-air interface of the air pockets. These visualizations indicate that the number of bright spots corresponding to the air pockets decreases with time. This type of gradual disappearance of the trapped air pockets is possibly the reason for the decrease in effective slip length with time in the flow experiments. From the practical point of usage of such surfaces to reduce pressure drop, say, in microchannels, this time scale of the order of 1 h for the reduction in slip length would be very crucial. It would ultimately decide the time over which the surface can usefully provide pressure drop reductions. ©2009 American Institute of Physics
Resumo:
Interfacial area measurement has been carried out experimentally by measuring the bubble size and holdup for air-sodium chloride solution system. The size of the bubble is predominantly established by the air hold up. High speed photography technique for bubble size measurement and gamma ray attenuation method for holdup measurements are followed. The measured values are compared with the theoretically predicted values. Interracial area as a function of the liquid flow rate and also its distance from the nozzle of the ejector has been reported in this paper. The results obtained for this non-reactive system are also compared with those of air-water system.
Resumo:
Obtaining drinking water from seawater is usually done through the process of desalination. The conventional desalination processes at present are centralized, require huge capital cost, and enormous amount of concentrated energy from fossil fuel. Issues like optimal chamber pressure, pressure control and energy savings for desalination are not adequately addressed. This paper proposes a novel pressure control method by means of dynamic pressure modulation within the evaporation chamber. A performance index is proposed that results in a dynamic optimal external pressure and maximum energy saving for a specific flow rate. Experimental results from the laboratory setup that validate the proposed concepts are presented in the paper. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Benzene drops were formed in continuous media of water and glycerine of varying physical properties. The effect on drop volumes of variables like volumetric flow-rate, interfacial tension, continuous phase viscosity and capillary diameter was studied. An equation has been developed, based on a two stage drop formation mechanism, which predicts drop volumes within an average error of 7 per cent for the range of physical properties employed in this investigation.