112 resultados para Twin Air, Multi Air, progettazione testata, motori diesel uso aeronautico, analisi FEM, analisi CFD
Resumo:
This paper deals with the characterisation of tar from two configurations of bioresidue thermochemical conversion reactors designed for producer gas based power generation systems. The pulverised fuel reactor is a cyclone system (R1) and the solid bioresidue reactor (denoted R2) is an open top twin air entry system both at 75-90 kg/h capacity (to generate electricity similar to 100 kVA). The reactor, R2, has undergone rigorous test in a major Indo-Swiss programme for the tar quantity at various conditions. The former is a recent technology development. Tars collected from these systems by a standard tar collection apparatus at the laboratory at Indian Institute of Science have been analysed at the Royal Institute of Technology (KTH), Sweden. The results of these analyses show that these thermochemical conversion reactors behave differently from the earlier reactors reported in literature in so far as tar generation is concerned. The extent of tar in hot gas is about 700-800 ppm for R1 and 70-100 ppm for R2. The amounts of the major compounds - naphthalene and phenol-are much lower that what is generally understood to happen in the gasifiers in Europe. It is suggested that the longer residence times at high temperatures allowed for in these reactors is responsible for this behavior. It is concluded the new generation reactor concepts extensively tried out at lower power levels hold promise for high power atmospheric gasification systems for woody as well as pulverisable bioresidues.
Resumo:
The Bangalore Metropolitan Transport Corporation (BMTC) took an initiative to check the overall benefits of introducing electric buses as a suitable replacement for the diesel buses to tackle the burgeoning pollution in the city of Bengaluru, India. For a trial run of three months, an electric bus was procured from a Chinese company `Build Your Dreams' (BYD). Data were collected by BMTC on the operation and maintenance of the bus. This new initiative, if rightly guided, could have a direct impact on the lives of those in the city. An economic analysis of the running as well as maintenance of the electric buses within the city limits was performed. For comparison, the same analysis was performed for the data from the existing diesel bus operating on the same route. On the basis of the study, it can be concluded that the introduction of electric buses as a means of public transport in the city would be beneficial both economically as well as environmentally. The electric bus also makes much less noise, thereby helping reduce noise pollution and makes less vibration when compared to the diesel bus. This results in a more comfortable journey for the passengers.
Resumo:
This paper extends the iterative linear matrix inequality algorithm (ILMI) for systems having non-ideal PI, PD and PID implementations. The new algorithm uses the practical implementation of the feedback blocksto form the equivalent static output feedback plant. The LMI based synthesis techniques are used in the algorithm to design a multi-loop, multi-objective fixed structure control. The benefits of such a control design technique are brought out by applying it to the lateral stabilizing and tracking feedback control problem of a 30cm wingspan micro air vehicle.
Resumo:
Droplet collision occurs frequently in regions where the droplet number density is high. Even for Lean Premixed and Pre-vaporized (LPP) liquid sprays, the collision effects can be very high on the droplet size distributions, which will in turn affect the droplet vaporization process. Hence, in conjunction with vaporization modeling, collision modeling for such spray systems is also essential. The standard O'Rourke's collision model, usually implemented in CFD codes, tends to generate unphysical numerical artifact when simulations are performed on Cartesian grid and the results are not grid independent. Thus, a new collision modeling approach based on no-time-counter method (NTC) proposed by Schmidt and Rutland is implemented to replace O'Rourke's collision algorithm to solve a spray injection problem in a cylindrical coflow premixer. The so called ``four-leaf clover'' numerical artifacts are eliminated by the new collision algorithm and results from a diesel spray show very good grid independence. Next, the dispersion and vaporization processes for liquid fuel sprays are simulated in a coflow premixer. Two liquid fuels under investigation are jet-A and Rapeseed Methyl Esters (RME). Results show very good grid independence in terms of SMD distribution, droplet number distribution and fuel vapor mass flow rate. A baseline test is first established with a spray cone angle of 90 degrees and injection velocity of 3 m/s and jet-A achieves much better vaporization performance than RME due to its higher vapor pressure. To improve the vaporization performance for both fuels, a series of simulations have been done at several different combinations of spray cone angle and injection velocity. At relatively low spray cone angle and injection velocity, the collision effect on the average droplet size and the vaporization performance are very high due to relatively high coalescence rate induced by droplet collisions. Thus, at higher spray cone angle and injection velocity, the results expectedly show improvement in fuel vaporization performance since smaller droplet has a higher vaporization rate. The vaporization performance and the level of homogeneity of fuel-air mixture can be significantly improved when the dispersion level is high, which can be achieved by increasing the spray cone angle and injection velocity. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The present study focuses on exploring air-assisted atomization strategies for effective atomization of high-viscosity biofuels, such as pure plant oils (PPOs). The first part of the study concerns application of a novel air-assisted impinging jet atomization for continuous spray applications, and the second part concerns transient spray applications. The particle/droplet imaging analysis (PDIA) technique along with direct imaging methods are used for the purpose of spray characterization. In the first part, effective atomization of Jatropha PPO is demonstrated at gas-to-liquid ratios (GLRs) on the order 0.1. The effect of liquid and gas flow rates on the spray characteristics is evaluated, and results indicate a Sauter mean diameter (SMD) of 50 mu m is achieved with GLRs as low as 0.05. In the second part of the study, a commercially available air-assisted transient atomizer is evaluated using Jatropha PPO. The effect of the pressure difference across the air injector and ambient gas pressure on liquid spray characteristics is studied. The results indicate that it is possible to achieve the same level of atomization of Jatropha as diesel fuel by operating the atomizer at a higher pressure difference. Specifically, a SMD of 44 mu m is obtained for the Jatropha oil using injection pressures of <1 MPa. A further interesting observation associated with this injector is the near constancy of a nondimensional spray penetration rate for the Jatropha oil spray.
Resumo:
A general mathematical model for forced air precooling of spherical food products in bulk is developed. The food products are arranged inline to form a rectangular parallelepiped. Chilled air is blown along the height of the package. The governing equations for the transient two-dimensional conduction with internal heat generation in the product, simultaneous heat and mass transfer at the product-air interface and one-dimensional transient energy and species conservation equations for the moist air are solved numerically using finite difference methods. Results are presented in the form of time-temperature histories. Experiments are conducted with model foods in a laboratory scale air precooling tunnel. The agreement between the theoretical and experimental results is found to be good. In general, a single product analysis fails to predict the precooling characteristics of bulk loads of food products. In the range of values investigated, the respiration heat is found to have a negligible effect.
Resumo:
Formative time lags in nitrogen, oxygen, and dry air are measured with and without a magnetic field over a range of gas pressures (0.05 ' p ' 20.2 torr 5 kPa to 2 MPa, electric field strengths (1.8xO14 EEs 60xlO V m l) and magnetic field strengths (85xl0-4 < B ' 16x10-2 Tesla). For experiments below the Paschen minimum, the electrodes are designed to ensure that breakdown occurs over longer gaps and for experiments above the Paschen minimum, a coaxial cylindrical system is employed. The experimental technique consists of applying pulse voltages to the gap at various constant values of E/p and B/p and measuring the time lags from which the formative time lags are separated. In the gases studed, formative time lags decrease on application of a magnetic field at a given pressure for conditions below the Paschen minimum. The voltages at which the formative time lags remain the same without and with magnetic fields are determined, and electron molecule collision frequencies (v/p) are determined using the Effective Reduced Electric Field [EREF] concept. With increasing ratio of E/p in crossed fields, v/p decreases in all the three gases. Measurements above the Paschen minimum yield formative time lags which increase on application of a magnetic field. Formative time lags in nitrogen in ExB fields are calculated assuming an average collision frequency of 8.5x109 sec-1 torr 1. It is concluded that the EREF concept can be applied to explain formative time lags in ExB fields.
Resumo:
It has been shown that it is possible to extend the validity of the Townsend breakdown criterion for evaluating the breakdown voltages in the complete pd range in which Paschen curves are available. Evaluation of the breakdown voltages for air (pd=0.0133 to 1400 kPa · cm), N2(pd=0.0313 to 1400 kPa · cm) and SF6 (pd=0.3000 to 1200 kPa · cm) has been done and in most cases the computed values are accurate to ±3% of the measured values. The computations show that it is also possible to estimate the secondary ionization coefficient ¿ in the pd ranges mentioned above.
Resumo:
Novel self-supported natural and synthetic polymer membranes of chitosan-hydroxy ethyl Cellulose-montmorillonite (CS-HEC-MMT) and polyvinyl alcohol (PVA)-polystyrene sulfonic acid (PSSA) are prepared by solution casting method followed by crosslinking. These membranes are employed for air humidification at varying temperatures between 30 degrees C and 70 degrees C and their performances are compared with commercial Nafion membranes. High hater fluxes with desired humidified-air output have been achieved for CS-HEC-MMT and PVA-PSSA hybrid membranes at air-flow rates of 1-10 slpm. Variation in the air/water mixing ratio, dew point, and relative humidity that ultimately results in desired water flux With respect to air-flow rates are also quantified for all the membranes. Water flux values for CS-HEC-MMT are less than those for Nafion (R) and PVA-PSSA membranes, but the operational Stability of CS-HEC-MMT membrane is higher than PVA-PSSA and comparable with Nafion (R) both of which can operate up to 70 degrees C at repetitive cycles of humidification.
Resumo:
Interfacial area measurement has been carried out experimentally by measuring the bubble size and holdup for air-sodium chloride solution system. The size of the bubble is predominantly established by the air hold up. High speed photography technique for bubble size measurement and gamma ray attenuation method for holdup measurements are followed. The measured values are compared with the theoretically predicted values. Interracial area as a function of the liquid flow rate and also its distance from the nozzle of the ejector has been reported in this paper. The results obtained for this non-reactive system are also compared with those of air-water system.
Resumo:
Thiosulfate (S2O32−) and tetrathionate (S4O62−)are oxidized to sulfate by air at atmospheric pressure and 50–70°C in the presence of cuprous oxide (Cu2O) as catalyst. Sulfate is produced from S2O32− by series-parallel reaction paths involving S4O62− as an intermediate. The rate data obtained for air oxidation of S2O32− on Cu2O agree well with a pseudo-homogeneous first order kinetic scheme, yielding values of rate constants for series parallel reaction paths which have been used in modelling the catalyzed air oxidation of S2O32−. Air oxidation of S4O62− on Cu2O proceeds at a higher rate in the presence of S2O32− than in its absence. Cu2O is less active than Cu2S for the air oxidation of S2O32−, as shown by the rate constant values which for Cu2O catalyzed oxidation are an order of magnitude smaller than those for the Cu2S catalyzed oxidation.
Resumo:
Porous carbon oxygen-reducing electrodes incorporated with perovskite oxide catalysts are reported. It has been possible to fabricate high-performance oxygen-reducing electrodes by introducing La0.5Sr0.5CoO3 and La0.99Sr0.01NiO3 with the activated coconut-shell charcoal; these electrodes could sustain load currents as high as 1 A cm−2 without serious degradation. A model to explain oxygen-reducing activity of these oxides has been proposed.
Resumo:
A novel type of magnesium-air primary cell has been evolved which employs non-polluting and abundantly available materials. The cell is based on the scheme Mg/Mg(NO3)2, NaNO2, H20/Q(C). The magnesium anode utilization is about 90% at a current density of 20 mAcm -2. The anode has been shown to exhibit a low open-circuit corrosion, a relatively uniform pattern of corrosion and a low negative difference effect in the electrolyte developed above as compared to the conventional halide or perchlorate electrolytes. In the usual air-depolarized mode of operation, the cell has been found to be capable of continuous discharge over several months at a constant cell voltage of about 1 V and a current density of 1 mAcm -2 at the cathode. The long service-life capability arises from the formation of a protective film on the porous carbon cathode and fast sedimentation of the anodic product (magnesium hydroxide) in the electrolyte. The cell has a shelf-life in the activated state of about a year due to the low open-circuit corrosion of the anode. These favourable features suggest the practical feasibility of developing economical, long-life, non-reserve magnesium-air ceils for diverse applications using magnesium anodes with a high surface area and porous carbon-air electrodes.
Resumo:
The sparking potentials and swarm coefficients ( ionization and attachment coefficients) were measured in Freon and Freon-air mixtures over the range of 24·3 times 10-16≤ E/ N ≤ 303 times 10-16 V cm2. Addition of Freon increased the sparking potential, and the rate of increase of the attachment coefficient with increasing percentage of Froon in the mixture was much larger than the rate of change of the first ionization coefficient.