141 resultados para Statistical mechanics
Resumo:
A method is developed for demonstrating how solitons with some internal periodic motion may emerge as elementary excitations in the statistical mechanics of field systems. The procedure is demonstrated in the context of complex scalar fields which can, for appropriate choices of the Lagrangian, yield charge-carrying solitons with such internal motion. The derivation uses the techniques of the steepest-descent method for functional integrals. It is shown that, despite the constraint of some fixed total charge, a gaslike excitation of such charged solitons does emerge.
Resumo:
This paper attempts to unravel any relations that may exist between turbulent shear flows and statistical mechanics through a detailed numerical investigation in the simplest case where both can be well defined. The flow considered for the purpose is the two-dimensional (2D) temporal free shear layer with a velocity difference Delta U across it, statistically homogeneous in the streamwise direction (x) and evolving from a plane vortex sheet in the direction normal to it (y) in a periodic-in-x domain L x +/-infinity. Extensive computer simulations of the flow are carried out through appropriate initial-value problems for a ``vortex gas'' comprising N point vortices of the same strength (gamma = L Delta U/N) and sign. Such a vortex gas is known to provide weak solutions of the Euler equation. More than ten different initial-condition classes are investigated using simulations involving up to 32 000 vortices, with ensemble averages evaluated over up to 10(3) realizations and integration over 10(4)L/Delta U. The temporal evolution of such a system is found to exhibit three distinct regimes. In Regime I the evolution is strongly influenced by the initial condition, sometimes lasting a significant fraction of L/Delta U. Regime III is a long-time domain-dependent evolution towards a statistically stationary state, via ``violent'' and ``slow'' relaxations P.-H. Chavanis, Physica A 391, 3657 (2012)], over flow time scales of order 10(2) and 10(4)L/Delta U, respectively (for N = 400). The final state involves a single structure that stochastically samples the domain, possibly constituting a ``relative equilibrium.'' The vortex distribution within the structure follows a nonisotropic truncated form of the Lundgren-Pointin (L-P) equilibrium distribution (with negatively high temperatures; L-P parameter lambda close to -1). The central finding is that, in the intermediate Regime II, the spreading rate of the layer is universal over the wide range of cases considered here. The value (in terms of momentum thickness) is 0.0166 +/- 0.0002 times Delta U. Regime II, extensively studied in the turbulent shear flow literature as a self-similar ``equilibrium'' state, is, however, a part of the rapid nonequilibrium evolution of the vortex-gas system, which we term ``explosive'' as it lasts less than one L/Delta U. Regime II also exhibits significant values of N-independent two-vortex correlations, indicating that current kinetic theories that neglect correlations or consider them as O(1/N) cannot describe this regime. The evolution of the layer thickness in present simulations in Regimes I and II agree with the experimental observations of spatially evolving (3D Navier-Stokes) shear layers. Further, the vorticity-stream-function relations in Regime III are close to those computed in 2D Navier-Stokes temporal shear layers J. Sommeria, C. Staquet, and R. Robert, J. Fluid Mech. 233, 661 (1991)]. These findings suggest the dominance of what may be called the Kelvin-Biot-Savart mechanism in determining the growth of the free shear layer through large-scale momentum and vorticity dispersal.
Resumo:
Active particles contain internal degrees of freedom with the ability to take in and dissipate energy and, in the process, execute systematic movement. Examples include all living organisms and their motile constituents such as molecular motors. This article reviews recent progress in applying the principles of nonequilibrium statistical mechanics and hydrodynamics to form a systematic theory of the behavior of collections of active particles-active matter-with only minimal regard to microscopic details. A unified view of the many kinds of active matter is presented, encompassing not only living systems but inanimate analogs. Theory and experiment are discussed side by side.
Resumo:
We study the generation of defects when a quantum spin system is quenched through a multicritical point by changing a parameter of the Hamiltonian as t/tau, where tau is the characteristic timescale of quenching. We argue that when a quantum system is quenched across a multicritical point, the density of defects (n) in the final state is not necessarily given by the Kibble-Zurek scaling form n similar to 1/tau(d nu)/((z nu+1)), where d is the spatial dimension, and. and z are respectively the correlation length and dynamical exponent associated with the quantum critical point. We propose a generalized scaling form of the defect density given by n similar to 1/(tau d/(2z2)), where the exponent z(2) determines the behavior of the off-diagonal term of the 2 x 2 Landau-Zener matrix at the multicritical point. This scaling is valid not only at a multicritical point but also at an ordinary critical point.
Resumo:
High pressure resistivity measurements on Se100-xTex, glasses for 0≤x≤30 are reported. Two composition regions, where the transport and transformation behaviour are different, are identified. For 0≤x≤6, there is a first-order-like transformation to metallic crystalline states, while for x>6 the transformation appears to be continuous. Glass-transition temperatures also show differences in trends as a function of composition around 6% Te. An attempt is made to explain the composition-dependent trends on the basis of known structural features of selenium glasses and of the nature of tellurium bonding. At concentrations with up to 6% tellurium, Te most likely enters selenium chain terminations, substituting for negatively charged Se1- defects, while at larger concentrations, tellurium probably enters chains and rings by a random substitution.
Resumo:
The pressure and temperature dependence of the electrical resistivity of bulk glassy Ge20Te80 is reported. The effect of annealing is also studied. The glass undergoes a polymorphous or congruent crystallization under high pressures. The high pressure phase is found to have fcc structure with Image . Under thermal treatment the glass undergoes the double stage crystallization. The sample annealed at the first crystallization temperature shows a pressure induced semiconductor-to-metal transition at 4.0 GPa pressure and the crystalline Ge20Te80 samples show the transition at 7 GPa pressure.
Resumo:
Rae and Davidson have found a striking connection between the averaging method generalised by Kruskal and the diagram technique used by the Brussels school in statistical mechanics. They have considered conservative systems whose evolution is governed by the Liouville equation. In this paper we have considered a class of dissipative systems whose evolution is governed not by the Liouville equation but by the last-multiplier equation of Jacobi whose Fourier transform has been shown to be the Hopf equation. The application of the diagram technique to the interaction representation of the Jacobi equation reveals the presence of two kinds of interactions, namely the transition from one mode to another and the persistence of a mode. The first kind occurs in the treatment of conservative systems while the latter type is unique to dissipative fields and is precisely the one that determines the asymptotic Jacobi equation. The dynamical equations of motion equivalent to this limiting Jacobi equation have been shown to be the same as averaged equations.
Resumo:
We carry out a systematic construction of the coarse-grained dynamical equation of motion for the orientational order parameter for a two-dimensional active nematic, that is a nonequilibrium steady state with uniaxial, apolar orientational order. Using the dynamical renormalization group, we show that the leading nonlinearities in this equation are marginally irrelevant. We discover a special limit of parameters in which the equation of motion for the angle field bears a close relation to the 2d stochastic Burgers equation. We find nevertheless that, unlike for the Burgers problem, the nonlinearity is marginally irrelevant even in this special limit, as a result of a hidden fluctuation-dissipation relation. 2d active nematics therefore have quasi-long-range order, just like their equilibrium counterparts.
Resumo:
We investigate the effect of hydrodynamic interactions on the non-equilibrium drift dynamics of an ideal flexible polymer pulled by a constant force applied at one polymer end using the perturbation theory and the renormalization group method. For moderate force, if the polymer elongation is small, the hydrodynamic interactions are not screened and the velocity and the longitudinal elongation of the polymer are computed using the renormalization group method. Both the velocity and elongation are nonlinear functions of the driving force in this regime. For large elongation we found two regimes. For large force but finite chain length L the hydrodynamic interactions are screened. For large chain lengths and a finite force the hydrodynamic interactions are only partially screened, which in three dimensions results in unusual logarithmic corrections to the velocity and the longitudinal elongation.
Resumo:
The growth rates of the hydrodynamic modes in the homogeneous sheared state of a granular material are determined by solving the Boltzmann equation. The steady velocity distribution is considered to be the product of the Maxwell Boltzmann distribution and a Hermite polynomial expansion in the velocity components; this form is inserted into them Boltzmann equation and solved to obtain the coeificients of the terms in the expansion. The solution is obtained using an expansion in the parameter epsilon =(1 - e)(1/2), and terms correct to epsilon(4) are retained to obtain an approximate solution; the error due to the neglect of higher terms is estimated at about 5% for e = 0.7. A small perturbation is placed on the distribution function in the form of a Hermite polynomial expansion for the velocity variations and a Fourier expansion in the spatial coordinates: this is inserted into the Boltzmann equation and the growth rate of the Fourier modes is determined. It is found that in the hydrodynamic limit, the growth rates of the hydrodynamic modes in the flow direction have unusual characteristics. The growth rate of the momentum diffusion mode is positive, indicating that density variations are unstable in the limit k--> 0, and the growth rate increases proportional to kslash} k kslash}(2/3) in the limit k --> 0 (in contrast to the k(2) increase in elastic systems), where k is the wave vector in the flow direction. The real and imaginary parts of the growth rate corresponding to the propagating also increase proportional to kslash k kslash(2/3) (in contrast to the k(2) and k increase in elastic systems). The energy mode is damped due to inelastic collisions between particles. The scaling of the growth rates of the hydrodynamic modes with the wave vector I in the gradient direction is similar to that in elastic systems. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
We study the occurrence of nonclassical rotational inertia (NCRI) arising from superfluidity along grain boundaries in a two-dimensionalbosonic system. We make use of a standard mapping between the zero-temperature properties of this system and the statistical mechanics of interacting vortex lines in the mixed phase of a type-II superconductor. In the mapping, the liquid phase of the vortex system corresponds to the superfluid bosonic phase. We consider numerically obtained polycrystalline configurations of the vortex lines in which the microcrystals are separated by liquidlike grain-boundary regions which widen as the vortex system temperature increases. The NCRI of the corresponding zero-temperature bosonic systems can then be numerically evaluated by solving the equations of superfluid hydrodynamics in the channels near the grain boundaries. We find that the NCRI increases very abruptly as the liquid regions in the vortex system (equivalently, superfluid regions in the bosonic system) form a connected, system-spanning structure with one or more closed loops. The implications of these results for experimentally observed supersolid phenomena are discussed.
Resumo:
The aim of this paper is to construct a nonequilibrium statistical‐mechanics theory to study hysteresis in ferromagnetic systems. We study the hysteretic response of model spin systems to periodic magnetic fields H(t) as a function of the amplitude H0 and frequency Ω. At fixed H0, we find conventional, squarelike hysteresis loops at low Ω, and rounded, roughly elliptical loops at high Ω, in agreement with experiments. For the O(N→∞), d=3, (Φ2)2 model with Langevin dynamics, we find a novel scaling behavior for the area A of the hysteresis loop, of the form A∝H0.660Ω0.33. We carry out a Monte Carlo simulation of the hysteretic response of the two‐dimensional, nearest‐neighbor, ferromagnetic Ising model. These results agree qualitatively with the results obtained for the O(N) model.
Resumo:
We consider the Kramers problem for a long chain polymer trapped in a biased double-well potential. Initially the polymer is in the less stable well and it can escape from this well to the other well by the motion of its N beads across the barrier to attain the configuration having lower free energy. In one dimension we simulate the crossing and show that the results are in agreement with the kink mechanism suggested earlier. In three dimensions, it has not been possible to get an analytical `kink solution' for an arbitrary potential; however, one can assume the form of the solution of the nonlinear equation as a kink solution and then find a double-well potential in three dimensions. To verify the kink mechanism, simulations of the dynamics of a discrete Rouse polymer model in a double well in three dimensions are carried out. We find that the time of crossing is proportional to the chain length, which is in agreement with the results for the kink mechanism. The shape of the kink solution is also in agreement with the analytical solution in both one and three dimensions.
Resumo:
Several of the most interesting quantum effects can or could be observed in nanoscopic systems. For example, the effect of strong correlations between electrons and of quantum interference can be measured in transport experiments through quantum dots, wires, individual molecules and rings formed by large molecules or arrays of quantum dots. In addition, quantum coherence and entanglement can be clearly observed in quantum corrals. In this paper we present calculations of transport properties through Aharonov-Bohm strongly correlated rings where the characteristic phenomenon of charge-spin separation is clearly observed. Additionally quantum interference effects show up in transport through pi-conjugated annulene molecules producing important effects on the conductance for different source-drain configurations, leading to the possibility of an interesting switching effect. Finally, elliptic quantum corrals offer an ideal system to study quantum entanglement due to their focalizing properties. Because of an enhanced interaction between impurities localized at the foci, these systems also show interesting quantum dynamical behaviour and offer a challenging scenario for quantum information experiments.
Resumo:
Interest in the applicability of fluctuation theorems to the thermodynamics of single molecules in external potentials has recently led to calculations of the work and total entropy distributions of Brownian oscillators in static and time-dependent electromagnetic fields. These calculations, which are based on solutions to a Smoluchowski equation, are not easily extended to a consideration of the other thermodynamic quantity of interest in such systems-the heat exchanges of the particle alone-because of the nonlinear dependence of the heat on a particle's stochastic trajectory. In this paper, we show that a path integral approach provides an exact expression for the distribution of the heat fluctuations of a charged Brownian oscillator in a static magnetic field. This approach is an extension of a similar path integral approach applied earlier by our group to the calculation of the heat distribution function of a trapped Brownian particle, which was found, in the limit of long times, to be consistent with experimental data on the thermal interactions of single micron-sized colloids in a viscous solvent.