26 resultados para STEEPEST DESCENT
Resumo:
A method is developed for demonstrating how solitons with some internal periodic motion may emerge as elementary excitations in the statistical mechanics of field systems. The procedure is demonstrated in the context of complex scalar fields which can, for appropriate choices of the Lagrangian, yield charge-carrying solitons with such internal motion. The derivation uses the techniques of the steepest-descent method for functional integrals. It is shown that, despite the constraint of some fixed total charge, a gaslike excitation of such charged solitons does emerge.
Resumo:
The problem of excitation of 11zultilayercd-graded-dielectric-coatedc onductor by a magnetic ring source is fornzulated in the ,form of a contour integrul which is rolved by using the method of steepest descent. Numerical evaluation of launching efiiency shows that high value of about 90 percent can be attained by choosing proper dimensions of the launcher with respect to the dimension of the surface wave line.
Resumo:
A general direct technique of solving a mixed boundary value problem in the theory of diffraction by a semi-infinite plane is presented. Taking account of the correct edge-conditions, the unique solution of the problem is derived, by means of Jones' method in the theory of Wiener-Hopf technique, in the case of incident plane wave. The solution of the half-plane problem is found out in exact form. (The far-field is derived by the method of steepest descent.) It is observed that it is not the Wiener-Hopf technique which really needs any modification but a new technique is certainly required to handle the peculiar type of coupled integral equations which the Wiener-Hopf technique leads to. Eine allgemeine direkte Technik zur Lösung eines gemischten Randwertproblems in der Theorie der Beugung an einer halbunendlichen Ebene wird vorgestellt. Unter Berücksichtigung der korrekten Eckbedingungen wird mit der Methode von Jones aus der Theorie der Wiener-Hopf-Technik die eindeutige Lösung für den Fall der einfallenden ebenen Welle hergeleitet. Die Lösung des Halbebenenproblems wird in exakter Form angegeben. (Das Fernfeld wurde mit der Methode des steilsten Abstiegs bestimmt.) Es wurde bemerkt, daß es nicht die Wiener-Hopf-Technik ist, die wirklich irgend welcher Modifikationen bedurfte. Gewiß aber wird eine neue Technik zur Behandlung des besonderen Typs gekoppelter Integralgleichungen benötigt, auf die die Wiener-Hopf-Technik führt.
Resumo:
We consider the problem of developing privacy-preserving machine learning algorithms in a dis-tributed multiparty setting. Here different parties own different parts of a data set, and the goal is to learn a classifier from the entire data set with-out any party revealing any information about the individual data points it owns. Pathak et al [7]recently proposed a solution to this problem in which each party learns a local classifier from its own data, and a third party then aggregates these classifiers in a privacy-preserving manner using a cryptographic scheme. The generaliza-tion performance of their algorithm is sensitive to the number of parties and the relative frac-tions of data owned by the different parties. In this paper, we describe a new differentially pri-vate algorithm for the multiparty setting that uses a stochastic gradient descent based procedure to directly optimize the overall multiparty ob-jective rather than combining classifiers learned from optimizing local objectives. The algorithm achieves a slightly weaker form of differential privacy than that of [7], but provides improved generalization guarantees that do not depend on the number of parties or the relative sizes of the individual data sets. Experimental results corrob-orate our theoretical findings.
Resumo:
A fuel optimal nonlinear sub-optimal guidance scheme is presented in this paper for soft landing of a lunar craft during the powered descent phase. The recently developed Generalized Model Predictive Static Programming (G-MPSP) is used to compute the required magnitude and angle of the thrust vector. Both terminal position and velocity vector are imposed as hard constraints, which ensures high position accuracy and facilitates initiation of vertical descent at the end of the powered descent phase. A key feature of the G-MPSP algorithm is that it converts the nonlinear dynamic programming problem into a low-dimensional static optimization problem (of the same dimension as the output vector). The control history update is done in closed form after computing a time-varying weighting matrix through a backward integration process. This feature makes the algorithm computationally efficient, which makes it suitable for on-board applications. The effectiveness of the proposed guidance algorithm is demonstrated through promising simulation results.
Resumo:
An adaptive learning scheme, based on a fuzzy approximation to the gradient descent method for training a pattern classifier using unlabeled samples, is described. The objective function defined for the fuzzy ISODATA clustering procedure is used as the loss function for computing the gradient. Learning is based on simultaneous fuzzy decisionmaking and estimation. It uses conditional fuzzy measures on unlabeled samples. An exponential membership function is assumed for each class, and the parameters constituting these membership functions are estimated, using the gradient, in a recursive fashion. The induced possibility of occurrence of each class is useful for estimation and is computed using 1) the membership of the new sample in that class and 2) the previously computed average possibility of occurrence of the same class. An inductive entropy measure is defined in terms of induced possibility distribution to measure the extent of learning. The method is illustrated with relevant examples.
Resumo:
An optimal pitch steering programme of a solid-fuel satellite launch vehicle to maximize either (1) the injection velocity at a given altitude, or (2) the size of circular orbit, for a given payload is presented. The two-dimensional model includes the rotation of atmosphere with the Earth, the vehicle's lift and drag, variation of thrust with time and altitude, inverse-square gravitational field, and the specified initial vertical take-off. The inequality constraints on the aerodynamic load, control force, and turning rates are also imposed. Using the properties of the central force motion the terminal constraint conditions at coast apogee are transferred to the penultimate stage burnout. Such a transformation converts a time-free problem into a time-fixed one, reduces the number of terminal constraints, improves accuracy, besides demanding less computer memory and time. The adjoint equations are developed in a compact matrix form. The problem is solved on an IBM 360/44 computer using a steepest ascent algorithm. An illustrative analysis of a typical launch vehicle establishes the speed of convergence, and accuracy and applicability of the algorithm.
Resumo:
We present four new reinforcement learning algorithms based on actor-critic, natural-gradient and functi approximation ideas,and we provide their convergence proofs. Actor-critic reinforcement learning methods are online approximations to policy iteration in which the value-function parameters are estimated using temporal difference learning and the policy parameters are updated by stochastic gradient descent. Methods based on policy gradients in this way are of special interest because of their compatibility with function-approximation methods, which are needed to handle large or infinite state spaces. The use of temporal difference learning in this way is of special interest because in many applications it dramatically reduces the variance of the gradient estimates. The use of the natural gradient is of interest because it can produce better conditioned parameterizations and has been shown to further reduce variance in some cases. Our results extend prior two-timescale convergence results for actor-critic methods by Konda and Tsitsiklis by using temporal difference learning in the actor and by incorporating natural gradients. Our results extend prior empirical studies of natural actor-critic methods by Peters, Vijayakumar and Schaal by providing the first convergence proofs and the first fully incremental algorithms.
Resumo:
A numerical simulation technique has been employed to study the thermal behavior of hot-forging type forming processes. Experiments on the coining and upsetting of an aluminum billet were conducted to validate the numerical predictions. Typical forming conditions for both the coining and upsetting processes were then studied in detail. an electrical analogy scheme was used to determine the thermal contact resistance. This scheme can conviniently provide the interface characteristics for typical processing conditions, which normally involve high pressures and temperatures. A single forging cycle was first considered, and then a batch of twenty-five forgings was studied. Each forging cycle includes the billet mounting, ascent, loading, dwelling, unloading, descent, and billet removal stages. The temperature distribution in the first forging to be formed is found to be significantly different from that at the end of the batch. In industry, forging is essentially a batch operation. The influence of forming speed and reduction on thermal characteristics was investigated also. The variations that can occur in the process design by considering differences in temperature characteristics are discussed also.
Resumo:
This paper(1) presents novel algorithms and applications for a particular class of mixed-norm regularization based Multiple Kernel Learning (MKL) formulations. The formulations assume that the given kernels are grouped and employ l(1) norm regularization for promoting sparsity within RKHS norms of each group and l(s), s >= 2 norm regularization for promoting non-sparse combinations across groups. Various sparsity levels in combining the kernels can be achieved by varying the grouping of kernels-hence we name the formulations as Variable Sparsity Kernel Learning (VSKL) formulations. While previous attempts have a non-convex formulation, here we present a convex formulation which admits efficient Mirror-Descent (MD) based solving techniques. The proposed MD based algorithm optimizes over product of simplices and has a computational complexity of O (m(2)n(tot) log n(max)/epsilon(2)) where m is no. training data points, n(max), n(tot) are the maximum no. kernels in any group, total no. kernels respectively and epsilon is the error in approximating the objective. A detailed proof of convergence of the algorithm is also presented. Experimental results show that the VSKL formulations are well-suited for multi-modal learning tasks like object categorization. Results also show that the MD based algorithm outperforms state-of-the-art MKL solvers in terms of computational efficiency.
Resumo:
Genetic Algorithms are robust search and optimization techniques. A Genetic Algorithm based approach for determining the optimal input distributions for generating random test vectors is proposed in the paper. A cost function based on the COP testability measure for determining the efficacy of the input distributions is discussed, A brief overview of Genetic Algorithms (GAs) and the specific details of our implementation are described. Experimental results based on ISCAS-85 benchmark circuits are presented. The performance pf our GA-based approach is compared with previous results. While the GA generates more efficient input distributions than the previous methods which are based on gradient descent search, the overheads of the GA in computing the input distributions are larger. To account for the relatively quick convergence of the gradient descent methods, we analyze the landscape of the COP-based cost function. We prove that the cost function is unimodal in the search space. This feature makes the cost function amenable to optimization by gradient-descent techniques as compared to random search methods such as Genetic Algorithms.
Resumo:
For a one-locus selection model, Svirezhev introduced an integral variational principle by defining a Lagrangian which remained stationary on the trajectory followed by the population undergoing selection. It is shown here (i) that this principle can be extended to multiple loci in some simple cases and (ii) that the Lagrangian is defined by a straightforward generalization of the one-locus case, but (iii) that in two-locus or more general models there is no straightforward extension of this principle if linkage and epistasis are present. The population trajectories can be constructed as trajectories of steepest ascent in a Riemannian metric space. A general method is formulated to find the metric tensor and the surface-in the metric space on which the trajectories, which characterize the variations in the gene structure of the population, lie. The local optimality principle holds good in such a space. In the special case when all possible linkage disequilibria are zero, the phase point of the n-locus genetic system moves on the surface of the product space of n higher dimensional unit spheres in a certain Riemannian metric space of gene frequencies so that the rate of change of mean fitness is maximum along the trajectory. In the two-locus case the corresponding surface is a hyper-torus.
Resumo:
An experimental programme based on statistical analysis was used for optimizing the reverse Rotation of silica from non-magnetic spiral preconcentrate of Kudremukh iron ore. Flotation of silica with amine and starch as the Rotation reagents was studied to estimate the optimum reagent levels at various mesh of grind. The experiments were first carried out using a two level three factor design. Analysis of the results showed that two parameters namely, the concentration level of the amine collector and the mesh of grind, were significant. Experiments based on an orthogonal design of the hexagonal type were then carried out to determine the effects of these two variables, on recovery and grade of the concentrate. Regression equations have been developed as models. Response contours have been plotted using the 'path of steepest ascent', maximum response has been optimized at 0.27 kg/ton of amine collector, 0.5 kg/ton of starch and mesh of grind of 48.7% passing 300 mesh to give a recovery of 83.43% of Fe in the concentrate containing 66.6% Fe and 2.17% SiO2.
Resumo:
In this paper we consider the problem of learning an n × n kernel matrix from m(1) similarity matrices under general convex loss. Past research have extensively studied the m = 1 case and have derived several algorithms which require sophisticated techniques like ACCP, SOCP, etc. The existing algorithms do not apply if one uses arbitrary losses and often can not handle m > 1 case. We present several provably convergent iterative algorithms, where each iteration requires either an SVM or a Multiple Kernel Learning (MKL) solver for m > 1 case. One of the major contributions of the paper is to extend the well knownMirror Descent(MD) framework to handle Cartesian product of psd matrices. This novel extension leads to an algorithm, called EMKL, which solves the problem in O(m2 log n 2) iterations; in each iteration one solves an MKL involving m kernels and m eigen-decomposition of n × n matrices. By suitably defining a restriction on the objective function, a faster version of EMKL is proposed, called REKL,which avoids the eigen-decomposition. An alternative to both EMKL and REKL is also suggested which requires only an SVMsolver. Experimental results on real world protein data set involving several similarity matrices illustrate the efficacy of the proposed algorithms.
Resumo:
Binary and ternary blends of nylon-6/low density polyethylene (nylon-6/LDPE) and Nylon-6/LDPE/poly(ethylene-co-glycidyl methacrylate) were prepared by melt mixing. The blends exhibit two phase morphology with LDPE dispersed in the form of spherical domains in the nylon-6 matrix. The mechanical properties of the blends were measured by standard methods. It is shown that the use of the epoxy copolymer as a compatibilizer improves the impact strength of the blend as compared to nylon-6, which is attributed to better stress transfer across the interface due to the compatibilizer. The data for each mechanical property were also fitted into a best fit model equation and the method of steepest ascent was applied to arrive at the optimum composition of the blend for that property.