88 resultados para Psychological assessment of drivers
Resumo:
Among the human factors that influence safe driving, visual skills of the driver can be considered fundamental. This study mainly focuses on investigating the effect of visual functions of drivers in India on their road crash involvement. Experiments were conducted to assess vision functions of Indian licensed drivers belonging to various organizations, age groups and driving experience. The test results were further related to the crash involvement histories of drivers through statistical tools. A generalized linear model was developed to ascertain the influence of these traits on propensity of crash involvement. Among the sampled drivers, colour vision, vertical field of vision, depth perception, contrast sensitivity, acuity and phoria were found to influence their crash involvement rates. In India, there are no efficient standards and testing methods to assess the visual capabilities of drivers during their licensing process and this study highlights the need for the same.
Resumo:
The demand for tunnelling and underground space creation is rapidly growing due to the requirement of civil infrastructure projects and urbanisation. Blasting remains the most inexpensive method of underground excavations in hard rock. Unfortunately, there are no specific safety guidelines available for the blasted tunnels with regards to the threshold limits of vibrations caused by repeated blasting activity in the close proximity. This paper presents the results of a comprehensive study conducted to find out the effect of repeated blast loading on the damage experienced by jointed basaltic rock mass during tunnelling works. Conducting of multiple rounds of blasts for various civil excavations in a railway tunnel imparted repeated loading on rock mass of sidewall and roof of the tunnel. The blast induced damage was assessed by using vibration attenuation equations of charge weight scaling law and measured by borehole extensometers and borehole camera. Ground vibrations of each blasting round were also monitored by triaxial geophones installed near the borehole extensometers. The peak particle velocity (V-max) observations and plastic deformations from borehole extensometers were used to develop a site specific damage model. The study reveals that repeated dynamic loading imparted on the exposed tunnel from subsequent blasts, in the vicinity, resulted in rock mass damage at lesser vibration levels than the critical peak particle velocity (V-cr). It was found that, the repeated blast loading resulted in the near-field damage due to high frequency waves and far-field damage due to low frequency waves. The far field damage, after 45-50 occurrences of blast loading, was up to 55% of the near-field damage in basaltic rock mass. The findings of the study clearly indicate that the phenomena of repeated blasting with respect to number of cycles of loading should be taken into consideration for proper assessment of blast induced damage in underground excavations.
Resumo:
Improving access to safe drinking water can result in multi-dimensional impacts on people's livelihood. This has been aptly reflected in the Millennium Development Goals (MDG) as one of the major objectives. Despite the availability of diverse and complex set of technologies for water purification, pragmatic and cost-effective use of the same is impeding the use of available sources of water. Hence, in country like India simple low-energy technologies such as solar still are likely to succeed. Solar stills would suffice the basic minimum drinking water requirements of man. Solar stills use sunlight, to kill or inactivate many, if not all, of the pathogens found in water. This paper provides an integrated assessment of the suitability of domestic solar still as a viable safe water technology for India. Also an attempt has been made to critically assess the operational feasibility and costs incurred for using this technology in rural India.
Resumo:
The Ozone Monitoring Instrument (OMI) aboard EOS-Aura and the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard EOS-Aqua fly in formation as part of the A-train. Though OMI retrieves aerosol optical depth (AOD) and aerosol absorption, it must assume aerosol layer height. The MODIS cannot retrieve aerosol absorption, but MODIS aerosol retrieval is not sensitive to aerosol layer height and with its smaller pixel size is less affected by subpixel clouds. Here we demonstrate an approach that uses MODIS-retrieved AOD to constrain the OMI retrieval, freeing OMI from making an a priori estimate of aerosol height and allowing a more direct retrieval of aerosol absorption. To predict near-UV optical depths using MODIS data we rely on the spectral curvature of the MODIS-retrieved visible and near-IR spectral AODs. Application of an OMI-MODIS joint retrieval over the north tropical Atlantic shows good agreement between OMI and MODIS-predicted AODs in the UV, which implies that the aerosol height assumed in the OMI-standard algorithm is probably correct. In contrast, over the Arabian Sea, MODIS-predicted AOD deviated from the OMI-standard retrieval, but combined OMI-MODIS retrievals substantially improved information on aerosol layer height (on the basis of validation against airborne lidar measurements). This implies an improvement in the aerosol absorption retrieval, but lack of UV absorption measurements prevents a true validation. Our study demonstrates the potential of multisatellite analysis of A-train data to improve the accuracy of retrieved aerosol products and suggests that a combined OMI-MODIS-CALIPSO retrieval has large potential to further improve assessments of aerosol absorption.
Resumo:
The objective of the current study was to investigate the mechanism by which the corpus luteum (CL) of the monkey undergoes desensitization to luteinizing hormone following exposure to increasing concentration of human chorionic gonadotrophin (hCG) as it occurs in pregnancy. Female bonnet monkeys were injected (im) increasing doses of hCG or dghCG beginning from day 6 or 12 of the luteal phase for either 10 or 4 or 2 days. The day of oestrogen surge was considered as day '0' of luteal phase. Luteal cells obtained from CL of these animals were incubated with hCG (2 and 200 pg/ml) or dbcAMP (2.5, 25 and 100 mu M) for 3 h at 37 degrees C and progesterone secreted was estimated. Corpora lutea of normal cycling monkeys on day 10/16/22 of the luteal phase were used as controls, In addition the in vivo response to CG and deglycosylated hCG (dghCG) was assessed by determining serum steroid profiles following their administration. hCG (from 15-90 IU) but not dghCG (15-90 IU) treatment in vivo significantly (P < 0.05) elevated serum progesterone and oestradiol levels. Serum progesterone, however, could not be maintained at a elevated level by continuous treatment with hCG (from day 6-15), the progesterone level declining beyond day 13 of luteal phase. Administering low doses of hCG (15-90 IU/day) from day 6-9 or high doses (600 IU/day) on days 8 and 9 of the luteal phase resulted in significant increase (about 10-fold over corresponding control P < 0.005) in the ability of luteal cells to synthesize progesterone (incubated controls) in vitro. The luteal cells of the treated animals responded to dbcAMP (P < 0.05) but not to hCG added in vitro, The in vitro response of luteal cells to added hCG was inhibited by 0, 50 and 100% if the animals were injected with low (15-90 IU) or medium (100 IU) between day 6-9 of luteal phase and high (600 IU on day 8 and 9 of luteal phase) doses of dghCG respectively; such treatment had no effect on responsivity of the cells to dbcAMP, The luteal cell responsiveness to dbcAMP in vitro was also blocked if hCG was administered for 10 days beginning day 6 of the luteal phase. Though short term hCG treatment during late luteal phase (from days 12-15) had no effect on luteal function, 10 day treatment beginning day 12 of luteal phase resulted in regain of in vitro responsiveness to both hCG (P < 0.05) and dbcAMP (P < 0.05) suggesting that luteal rescue can occur even at this late stage. In conclusion, desensitization of the CL to hCG appears to be governed by the dose/period for which it is exposed to hCG/dghCG. That desensitization is due to receptor occupancy is brought out by the fact that (i) this can be achieved by giving a larger dose of hCG over a 2 day period instead of a lower dose of the hormone for a longer (4 to 10 days) period and (ii) the effect can largely be reproduced by using dghCG instead of hCG to block the receptor sites. It appears that to achieve desensitization to dbcAMP also it is necessary to expose the luteal cell to relatively high dose of hCG for more than 4 days.
Resumo:
Crystals growing from solution, the vapour phase and from supercooled melt exhibit, as a rule, planar faces. The geometry and distribution of dislocations present within the crystals thus grown are strongly related to the growth on planar faces and to the different growth sectors rather than the physical properties of the crystals and the growth methods employed. As a result, many features of generation and geometrical arrangement of defects are common to extremely different crystal species. In this paper these commoner aspects of dislocation generation and configuration which permits one to predict their nature and distribution are discussed. For the purpose of imaging the defects a very versatile and widely applicable technique viz. x-ray diffraction topography is used. Growth dislocations in solution grown crystals follow straight path with strongly defined directions. These preferred directions which in most cases lie within an angle of ±15° to the growth normal depend on the growth direction and on the Burger's vector involved. The potential configuration of dislocations in the growing crystals can be evaluated using the theory developed by Klapper which is based on linear anisotropic elastic theory. The preferred line direction of a particular dislocation corresponds to that in which the dislocation energy per unit growth length is a minimum. The line direction analysis based on this theory enables one to characterise dislocations propagating in a growing crystal. A combined theoretical analysis and experimental investigation based on the above theory is presented.
Calciothermic reduction of TiO2: A diagrammatic assessment of the thermodynamic limit of deoxidation
Resumo:
Calciothermic reduction of TiO2 provides a potentially low-cost route to titanium production. Presented in this article is a suitably designed diagram, useful for assessing the degree of reduction of TiO2 and residual oxygen contamination in metal as a function of reduction temperature and other process parameters. The oxygen chemical potential diagram à la Ellingham-Richardson-Jeffes is useful for visualization of the thermodynamics of reduction reactions at high temperatures. Although traditionally the diagram depicts oxygen potentials corresponding to the oxidation of different metals to their corresponding oxides or of lower oxides to higher oxides, oxygen potentials associated with solution phases at constant composition can be readily superimposed. The usefulness of the diagram for an insightful analysis of calciothermic reduction, either direct or through an electrochemical process, is discussed. Identified are possible process variations, modeling and optimization strategies.
Resumo:
The paper presents a method for the evaluation of external stability of reinforced soil walls subjected to earthquakes in the framework of the pseudo-dynamic method. The seismic reliability of the wall is evaluated by considering the different possible failure modes such as sliding along the base, overturning about the toe point of the wall, bearing capacity and the eccentricity of the resultant force. The analysis is performed considering properties of the reinforced backfill, foundation soil below the base of the wall, length of the geosynthetic reinforcement and characteristics of earthquake ground motions such as shear wave and primary wave velocity as random variables. The optimum length of reinforcement needed to maintain stability against four modes of failure by targeting various component reliability indices is obtained. Differences between pseudo-static and pseudo-dynamic methods are clearly highlighted in the paper. A complete analysis of pseudo-static and pseudo-dynamic methodologies shows that the pseudodynamic method results in realistic design values for the length of geosynthetic reinforcement under earthquake conditions.
Resumo:
The classic work of Richardson and Gaunt [1 ], has provided an effective means of extrapolating the limiting result in an approximate analysis. From the authors' work on "Bounds for eigenvalues" [2-4] an interesting alternate method has emerged for assessing monotonically convergent approximate solutions by generating close bounds. Whereas further investigation is needed to put this work on sound theoretical foundation, we intend this letter to announce a possibility, which was confirmed by an exhaustive set of examples.
Resumo:
Uncertainties associated with the structural model and measured vibration data may lead to unreliable damage detection. In this paper, we show that geometric and measurement uncertainty cause considerable problem in damage assessment which can be alleviated by using a fuzzy logic-based approach for damage detection. Curvature damage factor (CDF) of a tapered cantilever beam are used as damage indicators. Monte Carlo simulation (MCS) is used to study the changes in the damage indicator due to uncertainty in the geometric properties of the beam. Variation in these CDF measures due to randomness in structural parameter, further contaminated with measurement noise, are used for developing and testing a fuzzy logic system (FLS). Results show that the method correctly identifies both single and multiple damages in the structure. For example, the FLS detects damage with an average accuracy of about 95 percent in a beam having geometric uncertainty of 1 percent COV and measurement noise of 10 percent in single damage scenario. For multiple damage case, the FLS identifies damages in the beam with an average accuracy of about 94 percent in the presence of above mentioned uncertainties. The paper brings together the disparate areas of probabilistic analysis and fuzzy logic to address uncertainty in structural damage detection.
Resumo:
Downscaling to station-scale hydrologic variables from large-scale atmospheric variables simulated by general circulation models (GCMs) is usually necessary to assess the hydrologic impact of climate change. This work presents CRF-downscaling, a new probabilistic downscaling method that represents the daily precipitation sequence as a conditional random field (CRF). The conditional distribution of the precipitation sequence at a site, given the daily atmospheric (large-scale) variable sequence, is modeled as a linear chain CRF. CRFs do not make assumptions on independence of observations, which gives them flexibility in using high-dimensional feature vectors. Maximum likelihood parameter estimation for the model is performed using limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimization. Maximum a posteriori estimation is used to determine the most likely precipitation sequence for a given set of atmospheric input variables using the Viterbi algorithm. Direct classification of dry/wet days as well as precipitation amount is achieved within a single modeling framework. The model is used to project the future cumulative distribution function of precipitation. Uncertainty in precipitation prediction is addressed through a modified Viterbi algorithm that predicts the n most likely sequences. The model is applied for downscaling monsoon (June-September) daily precipitation at eight sites in the Mahanadi basin in Orissa, India, using the MIROC3.2 medium-resolution GCM. The predicted distributions at all sites show an increase in the number of wet days, and also an increase in wet day precipitation amounts. A comparison of current and future predicted probability density functions for daily precipitation shows a change in shape of the density function with decreasing probability of lower precipitation and increasing probability of higher precipitation.
Resumo:
The Dissolved Gas Analysis (DGA) a non destructive test procedure, has been in vogue for a long time now, for assessing the status of power and related transformers in service. An early indication of likely internal faults that may exist in Transformers has been seen to be revealed, to a reasonable degree of accuracy by the DGA. The data acquisition and subsequent analysis needs an expert in the concerned area to accurately assess the condition of the equipment. Since the presence of the expert is not always guaranteed, it is incumbent on the part of the power utilities to requisition a well planned and reliable artificial expert system to replace, at least in part, an expert. This paper presents the application of Ordered Ant Mner (OAM) classifier for the prediction of involved fault. Secondly, the paper also attempts to estimate the remaining life of the power transformer as an extension to the elapsed life estimation method suggested in the literature.
Resumo:
A compact model for noise margin (NM) of single-electron transistor (SET) logic is developed, which is a function of device capacitances and background charge (zeta). Noise margin is, then, used as a metric to evaluate the robustness of SET logic against background charge, temperature, and variation of SET gate and tunnel junction capacitances (CG and CT). It is shown that choosing alpha=CT/CG=1/3 maximizes the NM. An estimate of the maximum tolerable zeta is shown to be equal to plusmn0.03 e. Finally, the effect of mismatch in device parameters on the NM is studied through exhaustive simulations, which indicates that a isin [0.3, 0.4] provides maximum robustness. It is also observed that mismatch can have a significant impact on static power dissipation.
Resumo:
In conventional analysis and design procedures of reinforced concrete structures, the ability of concrete to resist tension is neglected. Under cyclic loading, the tension-softening behavior of concrete influences its residual strength and subsequent crack propagation. The stability and the residual strength of a cracked reinforced concrete member under fatigue loading, depends on a number of factors such as, reinforcement ratio, specimen size, grade of concrete, and the fracture properties, and also on the tension-softening behavior of concrete. In the present work, a method is proposed to assess the residual strength of a reinforced concrete member subjected to cyclic loading. The crack extension resistance based approach is used for determining the condition for unstable crack propagation. Three different idealization of tension softening models are considered to study the effect of post-peak response of concrete. The effect of reinforcement is modeled as a closing force counteracting the effect of crack opening produced by the external moment. The effect of reinforcement percentage and specimen size on the failure of reinforced beams is studied. Finally, the residual strength of the beams are computed by including the softening behavior of concrete.
Resumo:
We have studied the as grown and annealed CdZnTe (Zn similar to 4 %) crystals for the assessment of their crystalline quality. As grown crystals suffer from tellurium precipitates and cadmium vacancies, which are inherent, due to retrograde solid solubility curve in the phase diagram. This is reflected in the Fourier transform infrared (FTIR) spectra over the 400 - 4500 cm(-1) range by a strong absorption around 2661 cm(-1) which corresponds to the band gap of tellurium confirming their presence, where-as a monotonic decrease in the transmission with the decrease in wave number indicates the presence of cadmium vacancies. Obviously the presence of Cd vacancies lead to the formation of tellurium precipitates confirming their presence. Annealed samples under cadmium + zinc ambient at 650 degrees C for 6 hours show an improvement in the transmission over the same range. This can be attributed to thermo-migration of tellurium precipitates and hence bonding with Cd or Zn to form CdZnTe. This is further supported by the reduced full width at half maximum in the X-ray diffraction rocking curve of these CdZnTe crystals. Cadmium annealing although can passivate Cd vacancy related defects and reduce the Te precipitates, as is observed in our low temperature Photoluminescence (PL) spectra, alone may not be sufficient possibly due to the loss of Zn. Vacuum annealing at 650 degrees C for 6 hours further deteriorated the material quality as is reflected in the low temperature PL spectra by the introduction of a new defect band around 0.85 eV and reduced IR transmission.