116 resultados para Photoconductive switch
Resumo:
Common mode voltage (CMV) variations in PWM inverter-fed drives generate unwanted shaft and bearing current resulting in early motor failure. Multilevel inverters reduce this problem to some extent, with higher number of levels. But the complexity of the power circuit increases with an increase in the number of inverter voltage levels. In this paper a five-level inverter structure is proposed for open-end winding induction motor (IM) drives, by cascading only two conventional two-level and three-level inverters, with the elimination of the common mode voltage over the entire modulation range. The DC link power supply requirement is also optimized by means of DC link capacitor voltage balancing, with PWM control., using only inverter switching state redundancies. The proposed power circuit gives a simple power bits structure.
Resumo:
We report on the bacterial protein-based all-optical switches which operate at low laser power, high speed and fulfil most of the requirements to be an ideal all-optical switch without any moving parts involved. This consists of conventional optical waveguides coated with bacteriorhodopsin films at switching locations. The principle of operation of the switch is based on the light-induced refractive index change of bacteriorhodopsin. This approach opens the possibility of realizing proteinbased all-optical switches for communication network, integrated optics and optical computers.
Resumo:
A conformationally locked tetraacetate undergoes, quite akin to a temperature-guided molecular switch, a reversible thermal switching between two polymorphic modifications; the room-temperature alpha-form converted at -4 degrees C to a low-temperature denser beta-form, which displayed an unusual kinetic stability till 67 degrees C and transformed back to the alpha-form beyond this temperature.
Resumo:
A novel ZVS auxiliary switch commutated variation for all DGDC converter topologies has been proposed in 2006. With proper designation of the circuit variables (throw current I and the pole voltage V), all these converters are seen to be governed by an identical set of equations. With idealized switches, the steady-state performance is obtainable in an analytical form. The conversion ratio of the converter topologies is obtained. A generalized equivalent circuit emerges for all these converters from the steady-state conversion ratio. It also provides a dynamic model as well. With these generalized steady-state equivalent circuits, small signal analysis of these converters may be carried out readily. It enables one to use the familiar state space averaged results of the standard PWM DGDC converters for the resonant counterparts. Th dc and ac models reveals that dc and low frequency behaviour of the proposed family of converters is similiar to that of its PWM parent
Resumo:
In this paper we consider an N x N non-blocking, space division ATM switch with input cell queueing. At each input, the cell arrival process comprises geometrically distributed bursts of consecutive cells for the various outputs. Motivated by the fact that some input links may be connected to metropolitan area networks, and others directly to B-ISDN terminals, we study the situation where there are two classes of inputs with different values of mean burst length. We show that when inputs contend for an output, giving priority to an input with smaller expected burst length yields a saturation throughput larger than if the reverse priority is given. Further, giving priority to less bursty traffic can give better throughput than if all the inputs were occupied by this less bursty traffic. We derive the asymptotic (as N --> infinity) saturation throughputs for each priority class.
Resumo:
We report a full self-consistent ab initio calculation of the conductance of a diarylethene-based molecular switch with two graphene electrodes. Our results show the contributions of the resonant states of the molecule, of the electrode density of states, and of graphene unique features, such as edge states. The conductivities are found to be significantly different for the two photochromic isomers at zero and finite applied bias. Further we point out the possibility of causing the switching by the application of a large potential difference between the two electrodes.
Resumo:
This paper describes a bi-directional switch commutation strategy for a resonant matrix converter loaded with a contactless energy transmission system. Due to the different application compared to classical 3 phase to 3 phase matrix converters supplying induction machines a new investigation of possible commutation principles is necessary. The paper therefore compares the full bridge series-resonant converter with the 3 phase to 2 phase matrix converter. From the commutation of the full bridge series-resonant converter, conditions for the bi-directional switch commutation are derived. One of the main benefits of the derived strategy is the minimization of commutation steps, which is independent from the load current sign.
Resumo:
HCV NS3 protein plays a central role in viral polyprotein processing and RNA replication. We demonstrate that the NS3 protease (NS3(pro)) domain alone can specifically bind to HCV-IRES RNA, predominantly in the SLIV region. The cleavage activity of the NS3 protease domain is reduced upon HCV-RNA binding. More importantly, NS3(pro) binding to the SLIV hinders the interaction of La protein, a cellular IRES-trans acting factor required for HCV IRES-mediated translation, resulting in inhibition of HCV-IRES activity. Although overexpression of both NS3(pro) as well as the full length NS3 protein decreased the level of HCV IRES mediated translation, replication of HCV replicon RNA was enhanced significantly. These observations suggest that the NS3(pro) binding to HCV IRES reduces translation in favor of RNA replication. The competition between the host factor (La) and the viral protein (NS3) for binding to HCV IRES might regulate the molecular switch from translation to replication of HCV.
Resumo:
We have prepared crystalline nanowires (diameter ∼ 50 nm, length ∼ a few microns) of the charge-ordering manganite Pr0.5Ca0.5MnO3 using a low reaction temperature hydrothermal method and characterized them using x-ray diffraction, transmission electron microscopy, superconducting quantum interference device (SQUID) magnetometry and electron magnetic resonance measurements. While the bulk sample shows a charge ordering transition at 245 K and an antiferromagnetic transition at 175 K, SQUID magnetometry and electron magnetic resonance experiments reveal that in the nanowires phase, a ferromagnetic transition occurs at ∼ 105 K. Further, the antiferromagnetic transition disappears and the charge ordering transition is suppressed. This result is particularly significant since the charge order in Pr0.5Ca0.5MnO3 is known to be very robust, magnetic fields as high as 27 T being needed to melt it.