85 resultados para POLYTROPIC SPHERES
Resumo:
We find in complementary experiments and event-driven simulations of sheared inelastic hard spheres that the velocity autocorrelation function psi(t) decays much faster than t(-3/2) obtained for a fluid of elastic spheres at equilibrium. Particle displacements are measured in experiments inside a gravity-driven flow sheared by a rough wall. The average packing fraction obtained in the experiments is 0.59, and the packing fraction in the simulations is varied between 0.5 and 0.59. The motion is observed to be diffusive over long times except in experiments where there is layering of particles parallel to boundaries, and diffusion is inhibited between layers. Regardless, a rapid decay of psi(t) is observed, indicating that this is a feature of the sheared dissipative fluid, and is independent of the details of the relative particle arrangements. An important implication of our study is that the non-analytic contribution to the shear stress may not be present in a sheared inelastic fluid, leading to a wider range of applicability of kinetic theory approaches to dense granular matter.
Resumo:
Three new procedures - in the context of estimation of virial coefficients and summation of the partial virial series for hard discs and hard spheres - are proposed. They are based on the parametrised Euler transformation, a novel resummation, identity and the ε-convergence methods respectively. A comparison with other estimates (molecular dynamics, graph theory and empirical methods) reveals satisfactory agreement.
Resumo:
The frequencies of the two modes of surface plasmon oscillations exhibited by coated semiconductor spheres can either decrease or increase with the size of the particle depending upon the ratio ωh1/ωh2, ε∞1 and ε∞2. When ωh1 = ωh2, the soft mode frequency becomes independent of the size of the sphere.
Resumo:
Mass histories of polystyrene spheres (initial diameter 2–5 mm) burning in simulated air have been obtained by quenching combustion after variable times and weighing the residues. The flame positions and temperature histories of the spheres have also been recorded. A simple analytical model — an extension of quasi-steady combustion theory of liquid droplets — is shown to describe the combustion process reasonably well. Though the combustion process is broadly similar to that of liquid spheres, flame diameter is relatively smaller, particle temperature higher, and decomposition reactions occur in the condensed phase.
Resumo:
In this paper, we have studied the secondary flow induced in a micropolar fluid by the rotation of two concentric spheres about a fixed diameter. The secondary flow exhibits behaviour commonly observed in visco-elastic fluids. In particular we have obtained the expressions for microrotation vector. Numerical results have been obtained for a number of values of relative rotations of the two spheres for a chosen set of values of fluid parameters. The results are presented graphically and compared with the previous investigations.
Resumo:
The paper deals with the study of the nature of secondary flow of aRivlin-Ericksen fluid, contained between two concentric spheres, which perform oscillations about a fixed diameter. The steady part of the secondary flow is discussed in detail in the following three cases (i) the outer sphere at rest, the inner oscillating, (ii) the two spheres oscillating with the same angular velocity in the same sense and (iii) the spheres oscillating with the same angular velocity in opposite sense. In a previous paper, a similar problem was discussed for theOldroyd fluids. We find that the secondary flow is strongly dependent on the common frequency of oscillation of the two spheres and on the rotational nature of the motion for the present investigation also. Certain contrasting features of interest between the secondary flow field of the two fluids are also noted.
Resumo:
We present two new support vector approaches for ordinal regression. These approaches find the concentric spheres with minimum volume that contain most of the training samples. Both approaches guarantee that the radii of the spheres are properly ordered at the optimal solution. The size of the optimization problem is linear in the number of training samples. The popular SMO algorithm is adapted to solve the resulting optimization problem. Numerical experiments on some real-world data sets verify the usefulness of our approaches for data mining.
Resumo:
The collisionless Boltzmann equation governing self-gravitating systems such as galaxies has recently been shown to admit exact oscillating solutions with planar and spherical symmetry. The relation of the spherically symmetric solutions to the Virial theorem, as well as generalizations to non-uniform spheres, uniform spheroids and discs form the subject of this paper. These models generalize known families of static solutions. The case of the spheroid is worked out in some detail. Quasiperiodic as well as chaotic time variation of the two axes is demonstrated by studying the surface of section for the associated Hamiltonian system with two degrees of freedom. The relation to earlier work and possible implications for the general problem of collisionless relaxation in self gravitating systems are also discussed.
Resumo:
The gasification of charcoal spheres in an atmosphere of carbon-dioxide-nitrogen mixture involving diffusion and reactions in the pores is modelled and the results are compared with experiments of Standish and Tanjung and those performed in the laboratory on wood-char spheres to determine the effects of diameter, density, gas composition and flow. The results indicate that the conversion time, t(c) approximately d1.03 for large particles (> 5 mm), departing substantially from the t(c) approximately d2 law valid for diffusion limited conditions. The computational studies indicate that the kinetic limit for the particle is below 100 mum. The conversion time varies inversely as the initial char density as expected in the model. Predictions from the model show that there is no significant change in conversion time up to 60% N2 consistent with the CO2-N2 experiments. The variation of diameter and density with time are predicted. The peculiar dependence of conversion time on flow velocity in the experiments is sought to be explained by opposing free and forced convection heat transfer and the attempt is only partly successful. The studies also indicate that the dependence on the CO concentration with low CO2 is significant, indicating the need for multistep reaction mechanism against the generally accepted single-step reaction.
Resumo:
A new type of covalent bulk modified glassy carbon composite electrode has been fabricated and utilized in the simultaneous determination of lead and cadmium ions in aqueous medium. The covalent bulk modification was achieved by the chemical reduction of 2-hydroxybenzoic acid diazonium tetrafluroborate in the presence of hypophosphorous acid as a chemical reducing agent. The covalent attachment of the modifier molecule was examined by studying Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and the surface morphology was examined by scanning electron microscopy images. The electrochemistry of modified glassy carbon spheres was studied by its cyclic voltammetry to decipher the complexing ability of the modifier molecules towards Pb2+ and Cd2+ ions. The developed sensor showed a linear response in the concentration range 1-10 mu M with a detection limit of 0.18 and 0.20 mu M for lead and cadmium, respectively. The applicability of the proposed sensor has been checked by measuring the lead and cadmium levels quantitatively from sewage water and battery effluent samples.
Resumo:
In this study, the free energy barriers for homogeneous crystal nucleation in a system that exhibits a eutectic point are computed using Monte Carlo simulations. The system studied is a binary hard sphere mixture with a diameter ratio of 0.85 between the smaller and larger hard spheres. The simulations of crystal nucleation are performed for the entire range of fluid compositions. The free energy barrier is found to be the highest near the eutectic point and is nearly five times that for the pure fluid, which slows down the nucleation rate by a factor of 10(-31). These free energy barriers are some of highest ever computed using simulations. For most of the conditions studied, the composition of the critical nucleus corresponds to either one of the two thermodynamically stable solid phases. However, near the eutectic point, the nucleation barrier is lowest for the formation of the metastable random hexagonal closed packed (rhcp) solid phase with composition lying in the two-phase region of the phase diagram. The fluid to solid phase transition is hypothesized to proceed via formation of a metastable rhcp phase followed by a phase separation into respective stable fcc solid phases.
Resumo:
We introduce the class Sigma(k)(d) of k-stellated (combinatorial) spheres of dimension d (0 <= k <= d + 1) and compare and contrast it with the class S-k(d) (0 <= k <= d) of k-stacked homology d-spheres. We have E-1(d) = S-1(d), and Sigma(k)(d) subset of S-k(d) ford >= 2k-1. However, for each k >= 2 there are k-stacked spheres which are not k-stellated. For d <= 2k - 2, the existence of k-stellated spheres which are not k-stacked remains an open question. We also consider the class W-k(d) (and K-k(d)) of simplicial complexes all whose vertex-links belong to Sigma(k)(d - 1) (respectively, S-k(d - 1)). Thus, W-k(d) subset of K-k(d) for d >= 2k, while W-1(d) = K-1(d). Let (K) over bar (k)(d) denote the class of d-dimensional complexes all whose vertex-links are k-stacked balls. We show that for d >= 2k + 2, there is a natural bijection M -> (M) over bar from K-k(d) onto (K) over bar (k)(d + 1) which is the inverse to the boundary map partial derivative: (K) over bar (k)(d + 1) -> (K) over bar (k)(d). Finally, we complement the tightness results of our recent paper, Bagchi and Datta (2013) 5], by showing that, for any field F, an F-orientable (k + 1)-neighbourly member of W-k(2k + 1) is F-tight if and only if it is k-stacked.