275 resultados para POLYMER-COATINGS
Resumo:
Thermally induced demixing in an LCST mixture, polystyrene (PS)/polyvinyl methyl ether] (PVME), was used as a template to design materials with high electrical conductivity. This was facilitated by gelation of multiwall carbon nanotubes (MWNTs) in a given phase of the blends. The MWNTs were mixed in the miscible blends and the thermodynamic driven demixing further resulted in selective localization in the PVME phase of the blends. This was further confirmed by atomic force microscopy (AFM). The time dependent gelation of MWNTs at shallow quench depth, evaluated using isochronal temperature sweep by rheology, was studied by monitoring the melt electrical conductivity of the samples in situ by an LCR meter coupled to a rheometer. By varying the composition in the mixture, several intricate shapes like gaskets and also coatings capable of attenuating the EM radiation in the microwave frequency can be derived. For instance, the PVME rich mixtures can be molded in the form of a gasket, O-ring and other intricate shapes while the PS rich mixtures can be coated onto an insulating polymer to enhance the shielding effectiveness (SE) for EM radiation. The SE of the various materials was analyzed using a vector network analyzer in both the X-band (8.2 to 12 GHz) and the K-u-band (12 to 18 GHz) frequency. The improved SE upon gelation of MWNTs in the demixed blends is well evident by comparing the SE before and after demixing. A reflection loss of -35 dB was observed in the blends with 2 wt% MWNTs. Further, by coating a layer of ca. 0.15 mm of PS/PVME/MWNT, a SE of -15 dB at 18 GHz could be obtained.
Resumo:
Herein a facile strategy has been adopted to design epoxy based adhesive/coating materials that can shield electromagnetic radiation. Multiwalled carbon nanotubes (MWNTs) were non-covalently modified with an ionic liquid and 5,10,15,20-tetrakis(4-methoxyphenyl)-21H,23H-porphine cobalt(II) (Co-TPP). The dispersion state of modified MWNTs in the composites was assessed using a scanning electron microscope. The electrical conductivity of the composites was improved with the addition of IL and Co-TPP. The shielding effectiveness was studied as a function of thickness and intriguingly, composites with as thin as 0.5 mm thickness were observed to reflect 497% of the incoming radiation. Carbon fibre reinforced polymer substrates were used to demonstrate the adhesive properties of the designed epoxy composites. Although, the shielding effectiveness of epoxy/MWNT composites with or without IL and Co-TPP is nearly the same for 0.5 mm thick samples, the lap shear test under tensile loading revealed an extraordinary adhesive bond strength for the epoxy/IL-MWNT/Co-TPP composites in contrast to neat epoxy. For instance, the lap shear strength of epoxy/IL-MWNT/Co-TPP composites was enhanced by 100% as compared to neat epoxy. Furthermore, the composites were thermally stable for practical utility in electronic applications as inferred from thermogravimetric analysis.
Resumo:
Plasma sprayable powders were prepared from ZrO2-CaO-CeO2 system using an organic binder and coated onto stainless steel substrates previously coated by a bond coat (Ni 22Cr 20Al 1.0Y) using plasma spraying. The coatings exhibited good thermal barrier characteristics and excellent resistance to thermal shock at 1000 degrees C under simulated laboratory conditions (90 half hour cycles without failure) and at 1200 degrees C under accelerated burner rig test conditions (500 2 min cycles without failure). No destabilization of cubic/tetragonal ZrO2 phase fraction occured either during the long hours (45 h cumulative) or the large number of thermal shock tests. Growth of a distinct SiO2 rich region within the ceramic was observed in the specimens thermal shock cycled at 1000 degrees C apart from mild oxidation of the bond coat. The specimens tested at 1200 degrees C had a glassy appearance on the top surface and exhibited severe oxidation of the bond coat at the ceramic-bond coat interface. The glassy appearance of the surface is due to the formation of a liquid silicate layer attributable to the impurity phase present in commercial grade ZrO2 powder. These observations are supported by SEM analysis and quantitative EDAX data.
Resumo:
in this contribution we present a soft matter solid electrolyte which was obtained by inclusion of a polymer (polyacrylonitrile, PAN) in LiClO4/LiTFSI-succinonitrile (SN), a semi-solid organic plastic electrolyte. Addition of the polymer resulted in considerable enhancement in ionic conductivity as well as mechanical strength of LiX-SN (X=ClO4, TFSI) plastic electrolyte. Ionic conductivity of 92.5%-[1 M LiClO4-SN]:7.5%-PAN (PAN amount as per SN weight) composite at 25 degrees C recorded a remarkably high value of 7 x 10(-3) Omega(-1) cm(-1), higher by few tens of order in magnitude compared to 1 M LiClO4-SN. Composite conductivity at sub-ambient temperature is also quite high. At -20 degrees C, the ionic conductivity of (100 -x)%-[1 M LiClO4-SN]:x%-PAN composites are in the range 3 x 10(-5)-4.5 x 10(-4) Omega(-1) cm(-1), approximately one to two orders of magnitude higher with respect to 1 M LiClO4-SN electrolyte conductivity. Addition of PAN resulted in an increase of the Young's modulus (Y) from Y -> 0 for LiClO4-SN to a maximum of 0.4MPa for the composites. Microstructural studies based on X-ray diffraction, differential scanning calorimetry and Fourier transform infrared spectroscopy suggest that enhancement in composite ionic conductivity is a combined effect of decrease in crystallinity and enhanced trans conformer concentration. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Commercially available mullite (3Al(2)O(3). 2SiO(2)) powders containing oxides of calcium and iron as impurities, have been made suitable for plasma spraying by using an organic binder. Stainless steel substrates covered with Ni-22Cr-10Al-1.0Y bond coat were spray coated with mullite, The 425 mu m thick coatings were subjected to thermal shock cycling under burner rig conditions between 1000 and 1200 degrees C and less than 200 degrees C with holding times of 1, 5, and 30 min. While the coatings withstood as high as 1000 shock cycles without failure between 1000 and 200 degrees C, spallation occurred early at 120 cycles when shocked from 1200 degrees C, The coatings appeared to go through a process of self erosion at high temperatures resulting in loss of material. Also observed were changes attributable to melting of the silicate grains, which smooth down the surface. Oxidation of the bond coat did not appear to influence the failure, These observations were supported by detailed scanning electron microscopy and quantitative chemical composition analysis, differential thermal analysis, and surface roughness measurements.
Resumo:
We present measurements of the rheology of suspensions of rigid spheres in a semi-dilute polymer solution from experiments of steady and oscillatory shear. For a given value of the shear rate gamma, addition of particles enhances the viscosity and the first normal stress difference but decreases the magnitude of the second normal stress difference. The viscosity eta exhibits a power law variation in gamma for a range of gamma that grows with phi. The first normal stress N-1 is positive and its value grows with phi; it exhibits a clear power law variation for the entire range of gamma that was studied. The second normal stress difference N-2 is negative for the pure polymer solution and much smaller in magnitude than N-1; on addition of particles, its magnitude further decreases, and it appears to change sign at large phi. The behavior of N-1 and N-2 is at odds with the findings of recent studies on particle-loaded dilute polymer solutions and polymer melts. The small-amplitude oscillatory shear experiments show the linear viscoelastic properties, G(') and G('), increasing with phi at a given value of the angular frequency omega. The dynamic viscosity of the suspension differs substantially from its steady shear viscosity, and the difference increases as gamma, omega -> 0.
Resumo:
Polymer nanocomposites offer the potential to create a new type of hybrid material with unique thermal, optical, or electrical properties. Understanding their structure, phase behavior, and dynamics is crucial for realizing such potentials. In this work we provide an experimental insight into the dynamics of such composites in terms of the temperature, wave vector, and volume fraction of nanoparticles, using multispeckle synchrotron x-ray photon correlation spectroscopy measurements on gold nanoparticles embedded in polymethylmethacrylate. Detailed analysis of the intermediate scattering functions reveals possible existence of an intrinsic length scale for dynamic heterogeneity in polymer nanocomposites similar to that seen in other soft materials like colloidal gels and glasses.
Resumo:
The mechanical properties of polyvinyl alcohol (PVA) and poly(methyl methacrylate) (PMMA)-matrix composites reinforced by functionalized few-layer graphene (FG) have been evaluated using the nano-indentation technique. A significant increase in both the elastic modulus and hardness is observed with the addition of 0.6 wt% of graphene. The crystallinity of PVA also increases with the addition of FG. This and the good mechanical interaction between the polymer and the FG, which provides better load transfer between the matrix and the fiber, are suggested to be responsible for the observed improvement in mechanical properties of the polymers.
Resumo:
A defect-selective photothermal imaging system for the diagnostics of optical coatings is demonstrated. The instrument has been optimized for pump and probe parameters, detector performance, and signal processing algorithm. The imager is capable of mapping purely optical or thermal defects efficiently in coatings of low damage threshold and low absorbance. Detailed mapping of minor inhomogeneities at low pump power has been achieved through the simultaneous action of a low-noise fiber optic photothermal beam defection sensor and a common-mode-rejection demodulation (CMRD) technique. The linearity and sensitivity of the sensor have been examined theoretically and experimentally, and the signal to noise ratio improvement factor is found to be about 110 compared to a conventional bicell photodiode. The scanner is so designed that mapping of static or shock sensitive samples is possible. In the case of a sample with absolute absorptance of 3.8 x 10(-4), a change in absorptance of about 0.005 x 10(-4) has been detected without ambiguity, ensuring a contrast parameter of 760. This is about 1085% improvement over the conventional approach containing a bicell photodiode, at the same pump power. The merits of the system have been demonstrated by mapping two intentionally created damage sites in a MgF2 coating on fused silica at different excitation powers. Amplitude and phase maps were recorded for thermally thin and thick cases, and the results are compared to demonstrate a case which, in conventional imaging, would lead to a deceptive conclusion regarding the type and location of the damage. Also, a residual damage profile created by long term irradiation with high pump power density has been depicted.
Resumo:
Electrochemical capacitors are electrochemical devices with fast and highly reversible charge-storage and discharge capabilities. The devices are attractive for energy storage particularly in applications involving high-power requirements. Electrochemical capacitors employ two electrodes and an aqueous or a non-aqueous electrolyte, either in liquid or solid form; the latter provides the advantages of compactness, reliability, freedom from leakage of any liquid component and a large operating potential-window. One of the classes of solid electrolytes used in capacitors is polymer-based and they generally consist of dry solid-polymer electrolytes or gel-polymer electrolyte or composite-polymer electrolytes. Dry solid-polymer electrolytes suffer from poor ionic-conductivity values, between 10(-8) and 10(-7) S cm(-1) under ambient conditions, but are safer than gel-polymer electrolytes that exhibit high conductivity of ca. 10(-3) S cm(-1) under ambient conditions. The aforesaid polymer-based electrolytes have the advantages of a wide potential window of ca. 4 V and hence can provide high energy-density. Gel-polymer electrolytes are generally prepared using organic solvents that are environmentally malignant. Hence, replacement of organic solvents with water in gel-polymer electrolytes is desirable which also minimizes the device cost substantially. The water containing gel-polymer electrolytes, called hydrogel-polymer electrolytes, are, however, limited by a low operating potential-window of only about 1.23 V. This article reviews salient features of electrochemical capacitors employing hydrogel-polymer electrolytes.
Resumo:
Polymerized carbon nanotubes (CNTs) are promising materials for polymer-based electronics and electro-mechanical sensors. The advantage of having a polymer nanolayer on CNTs widens the scope for functionalizing it in various ways for polymer electronic devices. However, in this paper, we show for the first time experimentally that, due to a resistive polymer layer having carbon nanoparticle inclusions and polymerized carbon nanotubes, an interesting dynamics can be exploited. We first show analytically that the relative change in the resistance of a single isolated semiconductive nanotube is directly proportional to the axial and torsional dynamic strains, when the strains are small, whereas, in polymerized CNTs, the viscoelasticity of the polymer and its effective electrical polarization give rise to nonlinear effects as a function of frequency and bias voltage. A simplified formula is derived to account for these effects and validated in the light of experimental results. CNT–polymer-based channels have been fabricated on a PZT substrate. Strain sensing performance of such a one-dimensional channel structure is reported. For a single frequency modulated sine pulse as input, which is common in elastic and acoustic wave-based diagnostics, imaging, microwave devices, energy harvesting, etc, the performance of the fabricated channel has been found to be promising.
Resumo:
We present results of temperature dependent measurements of dynamics of polymer grafted nanoparticles with high grafting density with star polymerlike morphology. We observed for the low grafting density and hence low functionality sample, a dynamically arrested state with lowering of temperature, similar to what was conjectured earlier. However the high grafting density sample shows liquidlike relaxation at all measured temperatures. Possible origin of dynamical arrest in the two grafting density sample is discussed.
Resumo:
Small angle x-ray scattering (SAXS) in a poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) solution has shown the important role of pi-electron conjugation in controlling the chain conformation and assembly. By increasing the extent of conjugation from 30 to 100%, the persistence length (l(p)) increases from 20 to 66 angstrom. Moreover, a pronounced second peak in the pair distribution function has been observed in a fully conjugated chain, at larger length scales. This feature indicates that the chain segments tend to self-assemble as the conjugation along the chain increases. Xylene enhances the rigidity of the PPV backbone to yield extended structures, while tetrahydrofuran solvates the side groups to form compact coils in which the lp is much shorter.
Resumo:
The nature of surface and subsurface reactions in polymer combustion is poorly underst0od.l During the burning of thermoplastic polymers a melt layer is observed on the surface, and below the melt layer there is thermal wave penetration. But the exact thickness of the melt layer and the thickness of the thermal wave penetration have not been precisely measured, although a qualitative idea has been given.
Resumo:
We have prepared, characterized and investigated a new PEG-2000 based solid polymer electrolyte (PEG) x NH4I. Ionic conductivity measurements have been made as a function of salt concentration as well as temperature in the range 265–330 K. Selected compositions of the electrolyte were exposed to a beam of 8 MeV electrons to an accumulated dose of 10 kGy to study the effect on ionic conductivity. The electrolyte samples were also quenched at liquid nitrogen temperature and conductivity measurements were made. The ionic conductivity at room temperature exhibits a characteristic double peak for the composition x = 20 and 70. Both electron beam irradiation and quenching at low temperature have resulted in an increase in conductivity by 1–2 orders of magnitude. The enhancement of conductivity upon irradiation and quenching is interpreted as due to an increase in amorphous region and decrease in crystallinity of the electrolyte. DSC and proton NMR measurements also support this conclusion.