233 resultados para Oil leakage sensing
Resumo:
The increasing variability in device leakage has made the design of keepers for wide OR structures a challenging task. The conventional feedback keepers (CONV) can no longer improve the performance of wide dynamic gates for the future technologies. In this paper, we propose an adaptive keeper technique called rate sensing keeper (RSK) that enables faster switching and tracks the variation across different process corners. It can switch upto 1.9x faster (for 20 legs) than CONV and can scale upto 32 legs as against 20 legs for CONV in a 130-nm 1.2-V process. The delay tracking is within 8% across the different process corners. We demonstrate the circuit operation of RSK using a 32 x 8 register file implemented in an industrial 130-nm 1.2-V CMOS process. The performance of individual dynamic logic gates are also evaluated on chip for various keeper techniques. We show that the RSK technique gives superior performance compared to the other alternatives such as Conditional Keeper (CKP) and current mirror-based keeper (LCR).
Resumo:
Detection of petroleum leakages in pipelines and storage tanks is a very important as it may lead to significant pollution of the environment, accidental hazards, and also it is a very important fuel resource. Petroleum leakage detection sensor based on fiber optics was fabricated by etching the fiber Bragg grating (FBG) to a region where the total internal reflection is affected. The experiment shows that the reflected Bragg's wavelength and intensity goes to zero when etched FBG is in air and recovers Bragg's wavelength and intensity when it is comes in contact with petroleum or any external fluid. This acts as high sensitive, fast response fluid optical switch in liquid level sensing, petroleum leakage detection etc. In this paper we present our results on using this technique in petroleum leakage detection.
Resumo:
We discuss the potential application of high dc voltage sensing using thin-film transistors (TFTs) on flexible substrates. High voltage sensing has potential applications for power transmission instrumentation. For this, we consider a gate metal-substrate-semiconductor architecture for TFTs. In this architecture, the flexible substrate not only provides mechanical support but also plays the role of the gate dielectric of the TFT. Hence, the thickness of the substrate needs to be optimized for maximizing transconductance, minimizing mechanical stress, and minimizing gate leakage currents. We discuss this optimization, and develop n-type and p-type organic TFTs using polyvinyldene fluoride as the substrate-gate insulator. Circuits are also realized to achieve level shifting, amplification, and high drain voltage operation.
Resumo:
Thin films are developed by dispersing carbon black nanoparticles and carbon nanotubes (CNTs) in an epoxy polymer. The films show a large variation in electrical resistance when subjected to quasi-static and dynamic mechanical loading. This phenomenon is attributed to the change in the band-gap of the CNTs due to the applied strain, and also to the change in the volume fraction of the constituent phases in the percolation network. Under quasi-static loading, the films show a nonlinear response. This nonlinearity in the response of the films is primarily attributed to the pre-yield softening of the epoxy polymer. The electrical resistance of the films is found to be strongly dependent on the magnitude and frequency of the applied dynamic strain, induced by a piezoelectric substrate. Interestingly, the resistance variation is found to be a linear function of frequency and dynamic strain. Samples with a small concentration of just 0.57% of CNT show a sensitivity as high as 2.5% MPa-1 for static mechanical loading. A mathematical model based on Bruggeman's effective medium theory is developed to better understand the experimental results. Dynamic mechanical loading experiments reveal a sensitivity as high as 0.007% Hz(-1) at a constant small-amplitude vibration and up to 0.13%/mu-strain at 0-500 Hz vibration. Potential applications of such thin films include highly sensitive strain sensors, accelerometers, artificial neural networks, artificial skin and polymer electronics.
Resumo:
Polymerized carbon nanotubes (CNTs) are promising materials for polymer-based electronics and electro-mechanical sensors. The advantage of having a polymer nanolayer on CNTs widens the scope for functionalizing it in various ways for polymer electronic devices. However, in this paper, we show for the first time experimentally that, due to a resistive polymer layer having carbon nanoparticle inclusions and polymerized carbon nanotubes, an interesting dynamics can be exploited. We first show analytically that the relative change in the resistance of a single isolated semiconductive nanotube is directly proportional to the axial and torsional dynamic strains, when the strains are small, whereas, in polymerized CNTs, the viscoelasticity of the polymer and its effective electrical polarization give rise to nonlinear effects as a function of frequency and bias voltage. A simplified formula is derived to account for these effects and validated in the light of experimental results. CNT–polymer-based channels have been fabricated on a PZT substrate. Strain sensing performance of such a one-dimensional channel structure is reported. For a single frequency modulated sine pulse as input, which is common in elastic and acoustic wave-based diagnostics, imaging, microwave devices, energy harvesting, etc, the performance of the fabricated channel has been found to be promising.
Resumo:
In view of its non-toxicity, and good dielectric properties, castor oil, a polar liquid dielectric of vegetable origin is suggested as a possible alternative to PCB's for capacitor applications. In this paper the dielectric properties (including partial discharge behavior), of all-polypropylene and paper-polypropylene capacitors with castor oil as impregnant, are reported. The paper also contains results of life studies conducted under accelerated electrical and thermal stresses when they are occurring both individually and combined. The data obtained have been statistically analyzed and approximate life of the system calculated bylinear extrapolation.
Resumo:
Several new liquids impregnants for capacitors have been suggested as possible alternatives to PCB'S which are being replaced in view of their harmful effects.The application of castor oil, a vegetable product, has been studied in the authors laboratary with the same obejective.
Resumo:
The issue of dynamic spectrum scene analysis in any cognitive radio network becomes extremely complex when low probability of intercept, spread spectrum systems are present in environment. The detection and estimation become more complex if frequency hopping spread spectrum is adaptive in nature. In this paper, we propose two phase approach for detection and estimation of frequency hoping signals. Polyphase filter bank has been proposed as the architecture of choice for detection phase to efficiently detect the presence of frequency hopping signal. Based on the modeling of frequency hopping signal it can be shown that parametric methods of line spectral analysis are well suited for estimation of frequency hopping signals if the issues of order estimation and time localization are resolved. An algorithm using line spectra parameter estimation and wavelet based transient detection has been proposed which resolves above issues in computationally efficient manner suitable for implementation in cognitive radio. The simulations show promising results proving that adaptive frequency hopping signals can be detected and demodulated in a non cooperative context, even at a very low signal to noise ratio in real time.
Resumo:
Low frequency fluctuations in the electrical resistivity, or noise, have been used as a sensitive tool to probe into the temperature driven martensite transition in dc magnetron sputtered thin films of nickel titanium shape-memory alloys. Even in the equilibrium or static case, the noise magnitude was more than nine orders of magnitude larger than conventional metallic thin films and had a characteristic dependence on temperature. We observe that the noise while the temperature is being ramped is far larger as compared to the equilibrium noise indicating the sensitivity of electrical resistivity to the nucleation and propagation of domains during the shape recovery. Further, the higher order statistics suggests the existence of long range correlations during the transition. This new characterization is based on the kinetics of disorder in the system and separate from existing techniques and can be integrated to many device applications of shape memory alloys for in-situ shape recovery sensing.
Resumo:
THE use of NMR to investigate the quality of the oil as a function of maturity of the seeds is demonstrated for sunflower seeds. The percentages of the saturated and individual unsaturated aids are determined as a function of time after flowering of the seeds. The percentage of saturated fatty acids is found to decrease with maturity of seeds whereas the extent of the unsaturated acids increases.
Resumo:
India is the midst of oil crisis.Many long term solution have been suggested.The question that is being asked is: can something be done immediately? Prof. A.K.N Reddy, who leads the group on the application of science & Techonology to rural area at the Indian Institute of Science has come with simple solutions which appears to well within our present technological capability.
Resumo:
The spreadability of SAE-30 oil on Al-12 Si base (LM-13) alloy containing dispersed graphite particles about 50 μm average size in its matrix is found to be greater than on either LM-13 with no graphite or brass. It is also found that the spreadability on LM-13 base alloys increase with increasing volume of graphite dispersion in the matrix of these alloys. Further increases in the spreadability of oil on machined LM-13-graphite particle composite test surfaces occur if these are rubbed initially against control discs of either LM-13 or grey cast iron. The formation of a triboinduced graphite-rich layer, confirmed by esca, appears to be responsible for the improved oil spreadability on the rubbed test surfaces of LM-13 base alloys as compared to the as-machined test surfaces prior to rubbing. The triboinduced layer of graphite is apparently responsible for the observed reduction in the friction, wear and seizing tendency of triboelements made from aluminium alloy-graphite particle composites.
Resumo:
Compressive sensing (CS) has been proposed for signals with sparsity in a linear transform domain. We explore a signal dependent unknown linear transform, namely the impulse response matrix operating on a sparse excitation, as in the linear model of speech production, for recovering compressive sensed speech. Since the linear transform is signal dependent and unknown, unlike the standard CS formulation, a codebook of transfer functions is proposed in a matching pursuit (MP) framework for CS recovery. It is found that MP is efficient and effective to recover CS encoded speech as well as jointly estimate the linear model. Moderate number of CS measurements and low order sparsity estimate will result in MP converge to the same linear transform as direct VQ of the LP vector derived from the original signal. There is also high positive correlation between signal domain approximation and CS measurement domain approximation for a large variety of speech spectra.
Resumo:
A study of the essential features of piston rings in the cylinder liner of an internal combustion engine reveals that the lubrication problem posed by it is basically that of a slider bearing. According to steady-flow-hydrodynamics, viz. Image the oil film thickness becomes zero at the dead centre positions as the velocity, U = 0. In practice, however, such a phenomenon cannot be supported by consideration of the wear rates of pistion rings and cylinder liners. This can be explained by including the “squeeze” action term in the