26 resultados para Monitoring Systems


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a networked control systems (NCS) framework for wide area monitoring control of smart power grids. We consider a scenario in which wide area measurements are transmitted to controllers at remote locations. We model the effects of delays and packet dropouts due to limited communication capabilities in the grid. We also design a robust networked controller to damp wide-area oscillations based on information obtained from Wide Area Monitoring Systems (WAMS), and analyze the improvement in system stability due to networked control. With communication integration being an important feature of the smart grid, detailed consideration of the effects of communication is essential in the control design for future power systems. We believe that this work is an essential step in this direction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In recent years, the time dependant maintenance of expensive high voltage power equipments is getting replaced by condition based maintenance so as to detect apriori an impending failure of the equipment. For condition based maintenance, most monitoring systems concentrate on the electrical quantities such as measurement and evaluation of partial discharges, tan delta, tip-up test, dielectric strength, insulation resistance, polarization and depolarization current. However, in the case of equipments being developed with novel nanodielectric insulating materials, the variation in these parameters before an impending failure is not available. Hence in this work, accelerated electrothermal aging studies have been conducted on unfilled epoxy as well as epoxy nanocomposite samples of 5 wt% filler loading, and the tan d values were continuously monitored to obtain the condition of the samples under study. It was observed that those samples whose tan d increased at a rapid rate failed first.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Power system disturbances are often caused by faults on transmission lines. When faults occur in a power system, the protective relays detect the fault and initiate tripping of appropriate circuit breakers, which isolate the affected part from the rest of the power system. Generally Extra High Voltage (EHV) transmission substations in power systems are connected with multiple transmission lines to neighboring substations. In some cases mal-operation of relays can happen under varying operating conditions, because of inappropriate coordination of relay settings. Due to these actions the power system margins for contingencies are decreasing. Hence, power system protective relaying reliability becomes increasingly important. In this paper an approach is presented using Support Vector Machine (SVM) as an intelligent tool for identifying the faulted line that is emanating from a substation and finding the distance from the substation. Results on 24-bus equivalent EHV system, part of Indian southern grid, are presented for illustration purpose. This approach is particularly important to avoid mal-operation of relays following a disturbance in the neighboring line connected to the same substation and assuring secure operation of the power systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new approach for assessing power system voltage stability based on artificial feed forward neural network (FFNN). The approach uses real and reactive power, as well as voltage vectors for generators and load buses to train the neural net (NN). The input properties of the NN are generated from offline training data with various simulated loading conditions using a conventional voltage stability algorithm based on the L-index. The performance of the trained NN is investigated on two systems under various voltage stability assessment conditions. Main advantage is that the proposed approach is fast, robust, accurate and can be used online for predicting the L-indices of all the power system buses simultaneously. The method can also be effectively used to determining local and global stability margin for further improvement measures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetorheological dampers are intrinsically nonlinear devices, which make the modeling and design of a suitable control algorithm an interesting and challenging task. To evaluate the potential of magnetorheological (MR) dampers in control applications and to take full advantages of its unique features, a mathematical model to accurately reproduce its dynamic behavior has to be developed and then a proper control strategy has to be taken that is implementable and can fully utilize their capabilities as a semi-active control device. The present paper focuses on both the aspects. First, the paper reports the testing of a magnetorheological damper with an universal testing machine, for a set of frequency, amplitude, and current. A modified Bouc-Wen model considering the amplitude and input current dependence of the damper parameters has been proposed. It has been shown that the damper response can be satisfactorily predicted with this model. Second, a backstepping based nonlinear current monitoring of magnetorheological dampers for semi-active control of structures under earthquakes has been developed. It provides a stable nonlinear magnetorheological damper current monitoring directly based on system feedback such that current change in magnetorheological damper is gradual. Unlike other MR damper control techniques available in literature, the main advantage of the proposed technique lies in its current input prediction directly based on system feedback and smooth update of input current. Furthermore, while developing the proposed semi-active algorithm, the dynamics of the supplied and commanded current to the damper has been considered. The efficiency of the proposed technique has been shown taking a base isolated three story building under a set of seismic excitation. Comparison with widely used clipped-optimal strategy has also been shown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A health-monitoring and life-estimation strategy for composite rotor blades is developed in this work. The cross-sectional stiffness reduction obtained by physics-based models is expressed as a function of the life of the structure using a recent phenomenological damage model. This stiffness reduction is further used to study the behavior of measurable system parameters such as blade deflections, loads, and strains of a composite rotor blade in static analysis and forward flight. The simulated measurements are obtained using an aeroelastic analysis of the composite rotor blade based on the finite element in space and time with physics-based damage modes that are then linked to the life consumption of the blade. The model-based measurements are contaminated with noise to simulate real data. Genetic fuzzy systems are developed for global online prediction of physical damage and life consumption using displacement- and force-based measurement deviations between damaged and undamaged conditions. Furthermore, local online prediction of physical damage and life consumption is done using strains measured along the blade length. It is observed that the life consumption in the matrix-cracking zone is about 12-15% and life consumption in debonding/delamination zone is about 45-55% of the total life of the blade. It is also observed that the success rate of the genetic fuzzy systems depends upon the number of measurements, type of measurements and training, and the testing noise level. The genetic fuzzy systems work quite well with noisy data and are recommended for online structural health monitoring of composite helicopter rotor blades.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications. (C) 2005 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fiber bragg grating (FBG) sensors have been widely used for number of sensing applications like temperature, pressure, acousto-ultrasonic, static and dynamic strain, refractive index change measurements and so on. Present work demonstrates the use of FBG sensors in in-situ measurement of vacuum process with simultaneous leak detection capability. Experiments were conducted in a bell jar vacuum chamber facilitated with conventional Pirani gauge for vacuum measurement. Three different experiments have been conducted to validate the performance of FBG sensor in monitoring vacuum creating process and air bleeding. The preliminary results of FBG sensors in vacuum monitoring have been compared with that of commercial Pirani gauge sensor. This novel technique offers a simple alternative to conventional method for real time monitoring of evacuation process. Proposed FBG based vacuum sensor has potential applications in vacuum systems involving hazardous environment such as chemical and gas plants, automobile industries, aeronautical establishments and leak monitoring in process industries, where the electrical or MEMS based sensors are prone to explosion and corrosion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An in-situ power monitoring technique for Dynamic Voltage and Threshold scaling (DVTS) systems is proposed which measures total power consumed by load circuit using sleep transistor acting as power sensor. Design details of power monitor are examined using simulation framework in UMC 90nm CMOS process. Experimental results of test chip fabricated in AMS 0.35µm CMOS process are presented. The test chip has variable activity between 0.05 and 0.5 and has PMOS VTH control through nWell contact. Maximum resolution obtained from power monitor is 0.25mV. Overhead of power monitor in terms of its power consumption is 0.244 mW (2.2% of total power of load circuit). Lastly, power monitor is used to demonstrate closed loop DVTS system. DVTS algorithm shows 46.3% power savings using in-situ power monitor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The specified range of free chlorine residual (between minimum and maximum) in water distribution systems needs to be maintained to avoid deterioration of the microbial quality of water, control taste and/or odor problems, and hinder formation of carcino-genic disinfection by-products. Multiple water quality sources for providing chlorine input are needed to maintain the chlorine residuals within a specified range throughout the distribution system. The determination of source dosage (i.e., chlorine concentrations/chlorine mass rates) at water quality sources to satisfy the above objective under dynamic conditions is a complex process. A nonlinear optimization problem is formulated to determine the chlorine dosage at the water quality sources subjected to minimum and maximum constraints on chlorine concentrations at all monitoring nodes. A genetic algorithm (GA) approach in which decision variables (chlorine dosage) are coded as binary strings is used to solve this highly nonlinear optimization problem, with nonlinearities arising due to set-point sources and non-first-order reactions. Application of the model is illustrated using three sample water distribution systems, and it indicates that the GA,is a useful tool for evaluating optimal water quality source chlorine schedules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an approach for identifying the faulted line section and fault location on transmission systems using support vector machines (SVMs) for diagnosis/post-fault analysis purpose. Power system disturbances are often caused by faults on transmission lines. When fault occurs on a transmission system, the protective relay detects the fault and initiates the tripping operation, which isolates the affected part from the rest of the power system. Based on the fault section identified, rapid and corrective restoration procedures can thus be taken to minimize the power interruption and limit the impact of outage on the system. The approach is particularly important for post-fault diagnosis of any mal-operation of relays following a disturbance in the neighboring line connected to the same substation. This may help in improving the fault monitoring/diagnosis process, thus assuring secure operation of the power systems. In this paper we compare SVMs with radial basis function neural networks (RBFNN) in data sets corresponding to different faults on a transmission system. Classification and regression accuracy is reported for both strategies. Studies on a practical 24-Bus equivalent EHV transmission system of the Indian Southern region is presented for indicating the improved generalization with the large margin classifiers in enhancing the efficacy of the chosen model.