177 resultados para Modifications chimiques
Resumo:
A measure of stability of a given epitope is an important parameter in the exploration of the utility of a desired MAb. It defines the conditions necessary for using MAbs as an investigative tool in several research methodologies and therapeutic protocols. Despite these obvious interests the lack of simple and rapid assay systems for quantitating MAb-Ag interactions has largely hampered these studies. A single step MAb-Solid Phase Radioimmunoassay (SS-SPRIA), is described which eliminates errors that may arise with multistep sandwich assays. SS-SPRIA has been used to demonstrate the differential stability of the assembled epitopes on gonadotropins. Differential stability towards specific reagents can be exploited to identify aminoacid residues at the epitopic site. Inactivation of an epitopic region is indicative of the presence of the group modified, provided conformational relaxations are not induced due to modifications at distant sites. Here we provide evidence to validate these conclusions.
Resumo:
Synthetic analogues of naturally occurring triterpenoids; glycyrrhetinic acid, arjunolic acid, and boswellic acids, by modification of A-ring with a cyano- and enone-functionality, have been reported. A novel method of synthesis of α-cyanoenones from isoxazoles is reported. Bioassays using primary mouse macrophages and tumor cell lines indicate potent anti-inflammatory and cytotoxic activities associated with cyano-enones of boswellic acid and glycyrrhetinic acid.
Resumo:
The lead based ferroelectric PbZr0.53Ti0.47O3 (PZT), (Pb0.90La0.10)TiO3 (PLT10) and (Pb0.80La0.20)TiO3 (PLT20) thin films, prepared by pulsed laser ablation technique, were studied for their response to the 70 MeV oxygen ion irradiation. The dielectric analysis, capacitance-voltage (C- V) and DC leakage current measurements were performed before and after the irradiation to high-energy oxygen ions. The irradiation produced considerable changes in the dielectric, C-V, leakage characteristics and induced some amount of amorphization. The PZT films showed partial recrystallization after a thermal annealing at 400 degrees C for 10 min. The phase transition temperature [T-c] of PLT20 increased from 115 degrees C to 120 degrees C. The DC conductivity measurements showed a shift in the onset of non-linear conduction region. The current density decreased by two orders of magnitude after irradiation. After annealing the irradiated films at a temperature of 400 degrees C for 10 min, the films partially regained the dielectric and electrical properties. The results are discussed in terms of the irradiation-induced amorphization, the pinning of the ferroelectric domains by trapped charges and the thermal annealing of the defects generated during the irradiation. (C) 2007 Elsevier B.V. All rights reserved.
Surface modifications in single crystal surfaces of YBa2Cu3O7-delta upon high energy ion irradiation
Resumo:
Atomic force microscopy investigations on swift heavy ion (200 MeV An) irradiated surfaces of a high T-c single crystal YBa2Cu3O7-delta are presented. Results obtained revealed an ion-induced erosion/sputtering clearly confirming our earlier observation on grain boundary dominated thin films. Apart from sputtering, notable effects were seen with many defect structures like dikes/hillocks surrounded by craters, dikes, holes, pearl like structures and ripple formation of sub-micron undulations, all in one crystal. Results are discussed in the light of co-operative phenomena of material re-distribution mechanism related to mass transfer and crater formations.
Resumo:
Lithium phosphorus oxynitride (LiPON), the widely used solid electrolyte for thin film microbatteries, is not compatible with the ambient humid temperatures. The reasons for reduction in ionic conductivity of LiPON thin films from 2.8 x 10(-6) Scm(-1) to 9.9 x 10(-10) Scm(-1) when exposed to air are analyzed with the aid of AC impedance measurements, SEM, XPS and stylus profilometry. Initially, particulate-free film surfaces obtained soon after rf sputter deposition in N-2 ambient conditions becomes covered with microstructures, forming pores in the film when exposed to air. LiPON films are deposited on Ti coated silicon in addition to bare silicon, ruling out the possibility of stress-related rupturing from the LiPON/Si interface. The reduction of nitrogen, phosphorus, and increased presence of lithium, oxygen and carbon over the film surface lowers the ionic conductivity of LiPON films when exposed to air. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
Post-irradiation studies have been carried out to elucidate the effects of electron beam irradiation on the structural, optical, dielectric, and thermal properties of high-density polyethylene (HDPE) films. The experimental results showed that both the optical band gap and activation energy of HDPE films decreases with an increase in the doses of electron radiation. The electrical measurements showed that dielectric constant and the ac conductivity of HDPE increases with an increase in the dose of electron radiation. The thermal analysis carried out using DSC and TGA revealed that the melting temperature, degree of crystallinity, and thermal stability of the HDPE films increased, obviously, due to the predominant cross-linking reaction following high doses of electron irradiation.
Resumo:
Role of swift heavy ion irradiation on the modification of transport and structural properties of high temperature superconductors is studied. Good quality YBCO thin films prepared by high pressure oxygen sputtering and laser ablation were used in this investigation. Resistivity and atomic force microscopy (AFM) were mainly used to probe superconducting and microstructural modifications resulted from the irradiation of high energy and heavy ions like 100 MeV oxygen and 200 MeV silver. Radiation induced sputtering or erosion is likely to be a major disastrous component of such high energy irradiation that could be powerful in masking phase coherence effects, atleast in grain boundaries. The extent of damage/nature of defects other than columnar defects produced by swift heavy ions is discussed in the light of AFM measurements. The effect of high energy oxygen ion irradiation is anomalous. A clear annealing effect at higher doses is seen. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
We report here, a finite difference thermal diffusion (FDTD) model for controlling the cross-section and the guiding nature of the buried channel waveguides fabricated on GeGaS bulk glasses using the direct laser writing technique. Optimization of the laser parameters for guiding at wavelength 1550 nm is done experimentally and compared with the theoretical values estimated by FDTD model. The mode field diameter (MFD) between 5.294 mu m and 24.706 mu m were attained by suitable selection of writing speed (1mm/s to 4 mm/s) and pulse energy (623 nJ to 806 nJ) of the laser at a fixed repletion rate of 100 kHz. Transition from single-mode to multi-mode waveguide is observed at pulse energy 806nJ as a consequence of heat accumulation. The thermal diffusion model fits well for single-mode waveguides with the exception of multi-mode waveguides.
Resumo:
Aptamers, and the selection process known as Systematic Evolution of Ligands by Exponential Enrichment (SELEX) used to generate them, were first described more than twenty years ago. Since then, there have been numerous modifications to the selection procedures. This review discusses the use of modified bases as a means of enhancing serum stability and producing effective therapeutic tools, as well as functionalising these nucleic acids to be used as potential diagnostic agents.
Resumo:
Histones regulate a variety of chromatin templated events by their post-translational modifications (PTMs). Although there are extensive reports on the PTMs of canonical histones, the information on the histone variants remains very scanty. Here, we report the identification of different PTMs, such as acetylation, methylation, and phosphorylation of a major mammalian histone variant TH2B. Our mass spectrometric analysis has led to the identification of both conserved and unique modifications across tetraploid spermatocytes and haploid spermatids. We have also computationally derived the 3-dimensional model of a TH2B containing nucleosome in order to study the spatial orientation of the PTMs identified and their effect on nucleosome stability and DNA binding potential. From our nucleosome model, it is evident that substititution of specific amino acid residues in TH2B results in both differential histone-DNA and histone-histone contacts. Furthermore, we have also observed that acetylation on the N-terminal tail of TH2B weakens the interactions with the DNA. These results provide direct evidence that, similar to somatic H2B, the testis specific histone TH2B also undergoes multiple PTMs, suggesting the possibility of chromatin regulation by such covalent modifications in mammalian male germ cells.
Resumo:
Standard trypsin digestion protocol of proteins followed by MALDI-MS analysis has been realized as an important tool for the identification and characterization of proteins. In this article, we proposed the elimination of the step of `staining/de-staining of gel pieces' in in-gel digestion protocol in order to improve the efficiency of trypsin digestion. Coomassie dye is known to interfere with digestion of proteins by trypsin and the procedure of staining-de-staining could result in loss of photoaffinity probe, post translational modifications and catalytic activities of enzymes. Further, we studied parameters like hydrophobicity and isoelectric point, and attempted to quantitatively relate it to the efficiency of trypsin digestion. We suggest that properties of proteins should be considered and trypsin digestion protocol should be appropriately modified as per sequence and other information.
Resumo:
Recombinant adeno-associated virus vectors based on serotype 8 (AAV8) have shown significant promise for liver-directed gene therapy. However, to overcome the vector dose dependent immunotoxicity seen with AAV8 vectors, it is important to develop better AAV8 vectors that provide enhanced gene expression at significantly low vector doses. Since it is known that AAV vectors during intracellular trafficking are targeted for destruction in the cytoplasm by the host-cellular kinase/ubiquitination/proteasomal machinery, we modified specific serine/threonine kinase or ubiquitination targets on the AAV8 capsid to augment its transduction efficiency. Point mutations at specific serine (S)/threonine (T)/lysine (K) residues were introduced in the AAV8 capsid at the positions equivalent to that of the effective AAV2 mutants, generated successfully earlier. Extensive structure analysis was carried out subsequently to evaluate the structural equivalence between the two serotypes. scAAV8 vectors with the wild-type (WT) and each one of the S/T -> Alanine (A) or K-Arginine (R) mutant capsids were evaluated for their liver transduction efficiency in C57BL/6 mice in vivo. Two of the AAV8-S -> A mutants (S279A and S671A), and a K137R mutant vector, demonstrated significantly higher enhanced green fluorescent protein (EGFP) transcript levels (similar to 9- to 46-fold) in the liver compared to animals that received WT-AAV8 vectors alone. The best performing AAV8 mutant (K137R) vector also had significantly reduced ubiquitination of the viral capsid, reduced activation of markers of innate immune response, and a concomitant two-fold reduction in the levels of neutralizing antibody formation in comparison to WT-AAV8 vectors. Vector bio-distribution studies revealed that the K137R mutant had a significantly higher and preferential transduction of the liver (106 vs. 7.7 vector copies/mouse diploid genome) when compared to WT-AAV8 vectors. To further study the utility of the K137R-AAV8 mutant in therapeutic gene transfer, we delivered human coagulation factor IX (h. FIX) under the control of liver-specific promoters (LP1 or hAAT) into C57BL/6 mice. The circulating levels of h. FIX: Ag were higher in all the K137R-AAV8 treated groups up to 8 weeks post-hepatic gene transfer. These studies demonstrate the feasibility of the use of this novel AAV8 vectors for potential gene therapy of hemophilia B.
Resumo:
Heterogeneous photocatalysis is an ideal green energy technology for the purification of wastewater. Although titania dominates as the reference photocatalyst, its wide band gap is a bottleneck for extended utility. Thus, search for non-TiO2 based nanomaterials has become an active area of research in recent years. In this regard, visible light absorbing polycrystalline WO3 (2.4-2.8 eV) and Bi2WO6 (2.8 eV) with versatile structure-electronic properties has gained considerable interest to promote the photocatalytic reactions. These materials are also explored in selective functional group transformation in organic reactions, because of low reduction and oxidation potential of WO3 CB and Bi2WO6 VB, respectively. In this focused review, various strategies such as foreign ion doping, noble metal deposition and heterostructuring with other semiconductors designed for efficient photocatalysis is discussed. These modifications not only extend the optical response to longer wavelengths, but also prolong the life-time of the charge carriers and strengthen the photocatalyst stability. The changes in the surface-bulk properties and the charge carrier transfer dynamics associated with each modification correlating to the high activity are emphasized. The presence of oxidizing agents, surface modification with Cu2+ ions and synthesis of exposed facets to promote the degradation rate is highlighted. In depth study on these nanomaterials is likely to sustain interest in wastewater remediation and envisaged to signify in various green energy applications. (C) 2015 Elsevier B.V. All rights reserved.