39 resultados para Mathematical argumentation
Resumo:
Discharge periods of lead-acid batteries are significantly reduced at subzero centigrade temperatures. The reduction is more than what can he expected due to decreased rates of various processes caused by a lowering of temperature and occurs despite the fact that active materials are available for discharge. It is proposed that the major cause for this is the freezing of the electrolyte. The concentration of acid decreases during battery discharge with a consequent increase in the freezing temperature. A battery freezes when the discharge temperature falls below the freezing temperature. A mathematical model is developed for conditions where charge-transfer reaction is the rate-limiting step. and Tafel kinetics are applicable. It is argued that freezing begins from the midplanes of electrodes and proceeds toward the reservoir in-between. Ionic conduction stops when one of the electrodes freezes fully and the time taken to reach that point, namely the discharge period, is calculated. The predictions of the model compare well to observations made at low current density (C/5) and at -20 and -40 degrees C. At higher current densities, however, diffusional resistances become important and a more complicated moving boundary problem needs to be solved to predict the discharge periods. (C) 2009 The Electrochemical Society.
Resumo:
A mathematical model for pulsatile flow in a partially occluded tube is presented. The problem has applications in studying the effects of blood flow characteristics on atherosclerotic development. The model brings out the importance of the pulsatility of blood flow on separation and the stress distribution. The results obtained show fairly good agreement with the available experimental results.
Resumo:
Plywood manufacture includes two fundamental stages. The first is to peel or separate logs into veneer sheets of different thicknesses. The second is to assemble veneer sheets into finished plywood products. At the first stage a decision must be made as to the number of different veneer thicknesses to be peeled and what these thicknesses should be. At the second stage, choices must be made as to how these veneers will be assembled into final products to meet certain constraints while minimizing wood loss. These decisions present a fundamental management dilemma. Costs of peeling, drying, storage, handling, etc. can be reduced by decreasing the number of veneer thicknesses peeled. However, a reduced set of thickness options may make it infeasible to produce the variety of products demanded by the market or increase wood loss by requiring less efficient selection of thicknesses for assembly. In this paper the joint problem of veneer choice and plywood construction is formulated as a nonlinear integer programming problem. A relatively simple optimal solution procedure is developed that exploits special problem structure. This procedure is examined on data from a British Columbia plywood mill. Restricted to the existing set of veneer thicknesses and plywood designs used by that mill, the procedure generated a solution that reduced wood loss by 79 percent, thereby increasing net revenue by 6.86 percent. Additional experiments were performed that examined the consequences of changing the number of veneer thicknesses used. Extensions are discussed that permit the consideration of more than one wood species.
Resumo:
Closed-form solutions are presented for approximate equations governing the pulsatile flow of blood through models of mild axisymmetric arterial stenosis, taking into account the effect of arterial distensibility. Results indicate the existence of back-flow regions and the phenomenon of flow-reversal in the cross-sections. The effects of pulsatility of flow and elasticity of vessel wall for arterial blood flow through stenosed vessels are determined.
Resumo:
This paper presents a comparative population dynamics study of three closely related species of buttercups (Ranunculus repens, R. acris, and R. bulbosus). The study is based on an investigation of the behaviour of the seeds in soil under field conditions and a continuous monitoring of survival and reproduction of some 9000 individual plants over a period of 21/2 years in a coastal grassland in North Wales. The data were analysed with the help of an extension of Leslie's matrix method which makes possible an simultaneous treatment of vegetative and sexual reproduction. It was found that R. repens (a) depends more heavily on vegetative as compared with sexual reproduction, (b) shows indications of negatively density-dependent population regulation, and (c) exhibits little variation in population growth rates from site to site and from one year to the next. In contrast, R. bulbosus (a) depends exclusively on sexual reproduction, (b) shows indications of a positively density-dependent population behaviour, and (c) exhibits great variation in population growth rates from site to site and from one year to the next. R. acris exhibits an intermediate behaviour in all these respects. It is suggested that the attributes of R. repens are those expected of a species inhabiting a stable environment, while R. bulbosus exhibits some of the characteristics of a fugitive species.
Resumo:
In cases whazo zotatLon of the seoondazy pztncipal 8tzo,ae axes along tha light path ,exists, it is always poaeible to detezmlna two dizactions along which plane-polazlaad light ,antazlng the model ,amerCe8 as plene-pela~l,aed light fzom the model. Puzth,az the nat zstazdatton Pot any light path is dlff,azant Prom the lntsgtatad zetazd,ation Pat the l£ght path nogZsctlng the ePfsct or z,atation.
Resumo:
In this paper, pattern classification problem in tool wear monitoring is solved using nature inspired techniques such as Genetic Programming(GP) and Ant-Miner (AM). The main advantage of GP and AM is their ability to learn the underlying data relationships and express them in the form of mathematical equation or simple rules. The extraction of knowledge from the training data set using GP and AM are in the form of Genetic Programming Classifier Expression (GPCE) and rules respectively. The GPCE and AM extracted rules are then applied to set of data in the testing/validation set to obtain the classification accuracy. A major attraction in GP evolved GPCE and AM based classification is the possibility of obtaining an expert system like rules that can be directly applied subsequently by the user in his/her application. The performance of the data classification using GP and AM is as good as the classification accuracy obtained in the earlier study.
Resumo:
Regular electrical activation waves in cardiac tissue lead to the rhythmic contraction and expansion of the heart that ensures blood supply to the whole body. Irregularities in the propagation of these activation waves can result in cardiac arrhythmias, like ventricular tachycardia (VT) and ventricular fibrillation (VF), which are major causes of death in the industrialised world. Indeed there is growing consensus that spiral or scroll waves of electrical activation in cardiac tissue are associated with VT, whereas, when these waves break to yield spiral- or scroll-wave turbulence, VT develops into life-threatening VF: in the absence of medical intervention, this makes the heart incapable of pumping blood and a patient dies in roughly two-and-a-half minutes after the initiation of VF. Thus studies of spiral- and scroll-wave dynamics in cardiac tissue pose important challenges for in vivo and in vitro experimental studies and for in silico numerical studies of mathematical models for cardiac tissue. A major goal here is to develop low-amplitude defibrillation schemes for the elimination of VT and VF, especially in the presence of inhomogeneities that occur commonly in cardiac tissue. We present a detailed and systematic study of spiral- and scroll-wave turbulence and spatiotemporal chaos in four mathematical models for cardiac tissue, namely, the Panfilov, Luo-Rudy phase 1 (LRI), reduced Priebe-Beuckelmann (RPB) models, and the model of ten Tusscher, Noble, Noble, and Panfilov (TNNP). In particular, we use extensive numerical simulations to elucidate the interaction of spiral and scroll waves in these models with conduction and ionic inhomogeneities; we also examine the suppression of spiral- and scroll-wave turbulence by low-amplitude control pulses. Our central qualitative result is that, in all these models, the dynamics of such spiral waves depends very sensitively on such inhomogeneities. We also study two types of control chemes that have been suggested for the control of spiral turbulence, via low amplitude current pulses, in such mathematical models for cardiac tissue; our investigations here are designed to examine the efficacy of such control schemes in the presence of inhomogeneities. We find that a local pulsing scheme does not suppress spiral turbulence in the presence of inhomogeneities; but a scheme that uses control pulses on a spatially extended mesh is more successful in the elimination of spiral turbulence. We discuss the theoretical and experimental implications of our study that have a direct bearing on defibrillation, the control of life-threatening cardiac arrhythmias such as ventricular fibrillation.
Resumo:
A theory and generalized synthesis procedure is advocated for the design of weir notches and orifice-notches having a base in any given shape, to a depth a, such that the discharge through it is proportional to any singular monotonically-increasing function of the depth of flow measured above a certain datum. The problem is reduced to finding an exact solution of a Volterra integral equation in Abel form. The maximization of the depth of the datum below the crest of the notch is investigated. Proof is given that for a weir notch made out of one continuous curve, and for a flow proportional to the mth power of the head, it is impossible to bring the datum lower than (2m − 1)a below the crest of the notch. A new concept of an orifice-notch, having discontinuity in the curve and a division of flow into two distinct portions, is presented. The division of flow is shown to have a beneficial effect in reducing the datum below (2m − 1)a from the crest of the weir and still maintaining the proportionality of the flow. Experimental proof with one such orifice-notch is found to have a constant coefficient of discharge of 0.625. The importance of this analysis in the design of grit chambers is emphasized.
Resumo:
A detailed mechanics based model is developed to analyze the problem of structural instability in slender aerospace vehicles. Coupling among the rigid-body modes, the longitudinal vibrational modes and the transverse vibrational modes due to asymmetric lifting-body cross-section are considered. The model also incorporates the effects of aerodynamic pressure and the propulsive thrust of the vehicle. The model is one-dimensional, and it can be employed to idealized slender vehicles with complex shapes. Condition under which a flexible body with internal stress waves behaves like a perfect rigid body is derived. Two methods are developed for finite element discretization of the system: (1) A time-frequency Fourier spectral finite element method and (2) h-p finite element method. Numerical results using the above methods are presented in Part II of this paper. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Motivated by certain situations in manufacturing systems and communication networks, we look into the problem of maximizing the profit in a queueing system with linear reward and cost structure and having a choice of selecting the streams of Poisson arrivals according to an independent Markov chain. We view the system as a MMPP/GI/1 queue and seek to maximize the profits by optimally choosing the stationary probabilities of the modulating Markov chain. We consider two formulations of the optimization problem. The first one (which we call the PUT problem) seeks to maximize the profit per unit time whereas the second one considers the maximization of the profit per accepted customer (the PAC problem). In each of these formulations, we explore three separate problems. In the first one, the constraints come from bounding the utilization of an infinite capacity server; in the second one the constraints arise from bounding the mean queue length of the same queue; and in the third one the finite capacity of the buffer reflect as a set of constraints. In the problems bounding the utilization factor of the queue, the solutions are given by essentially linear programs, while the problems with mean queue length constraints are linear programs if the service is exponentially distributed. The problems modeling the finite capacity queue are non-convex programs for which global maxima can be found. There is a rich relationship between the solutions of the PUT and PAC problems. In particular, the PUT solutions always make the server work at a utilization factor that is no less than that of the PAC solutions.
Resumo:
Nevirapine forms the mainstay of our efforts to curtail the pediatric AIDS epidemic through prevention of mother-to-child transmission of HIV-1. A key limitation, however, is the rapid selection of HIV-1 strains resistant to nevirapine following the administration of a single dose. This rapid selection of resistance suggests that nevirapine-resistant strains preexist in HIV-1 patients and may adversely affect outcomes of treatment. The frequencies of nevirapine-resistant strains in vivo, however, remain poorly estimated, possibly because they exist as a minority below current assay detection limits. Here, we employ stochastic simulations and a mathematical model to estimate the frequencies of strains carrying different combinations of the common nevirapine resistance mutations K103N, V106A, Y181C, Y188C, and G190A in chronically infected HIV-1 patients naive to nevirapine. We estimate the relative fitness of mutant strains from an independent analysis of previous competitive growth assays. We predict that single mutants are likely to preexist in patients at frequencies (similar to 0.01% to 0.001%) near or below current assay detection limits (>0.01%), emphasizing the need for more-sensitive assays. The existence of double mutants is subject to large stochastic variations. Triple and higher mutants are predicted not to exist. Our estimates are robust to variations in the recombination rate, cellular superinfection frequency, and the effective population size. Thus, with 10(7) to 10(8) infected cells in HIV-1 patients, even when undetected, nevirapine-resistant genomes may exist in substantial numbers and compromise efforts to prevent mother-to-child transmission of HIV-1, accelerate the failure of subsequent antiretroviral treatments, and facilitate the transmission of drug resistance.
Resumo:
The energy input to giant molecular clouds is recalculated, using the proper linearized equations of motion, including the Coriolis force and allowing for changes in the guiding center. Perturbation theory yields a result in the limit of distant encounters and small initial epicyclic amplitudes. Direct integration of the motion equations allows the strong encounter regime to be studied. The present perturbation theory result differs by a factor of order unity from that of Jog and Ostriker (1988). The result of present numerical integrations for the 2D (planar) velocity dispersion is presented. The accretion rate for a molecular cloud in the Galactic disk is calculated.
Resumo:
Our investigations in this paper are centred around the mathematical analysis of a ldquomodal waverdquo problem. We have considered the axisymmetric flow of an inviscid liquid in a thinwalled viscoelastic tube under certain simplifying assumptions. We have first derived the propagation space equations in the long wave limit and also given a general procedure to derive these equations for arbitrary wave length, when the flow is irrotational. We have used the method of operators of multiple scales to derive the nonlinear Schrödinger equation governing the modulation of periodic waves and we have elaborated on the ldquolong modulated wavesrdquo and the ldquomodulated long wavesrdquo. We have also examined the existence and stability of Stokes waves in this system. This is followed by a discussion of the progressive wave solutions of the long wave equations. One of the most important results of our paper is that the propagation space equations are no longer partial differential equations but they are in terms of pseudo-differential operators.Die vorliegenden Untersuchungen beziehen sich auf die mathematische Behandlung des ldquorModalwellenrdquo-Problems. Die achsensymmetrische Strömung einer nichtviskosen Flüssigkeit in einem dünnwandigen viskoelastischen Rohr, unter bestimmten vereinfachenden Annahmen, wird betrachtet. Zuerst werden die Gleichungen des Ausbreitungsraumes im Langwellenbereich abgeleitet und eine allgemeine Methode zur Herleitung dieser Gleichungen für beliebige Wellenlängen bei nichtrotierender Strömung angegeben. Eine Operatorenmethode mit multiplem Maßstab wird verwendet zur Herleitung der nichtlinearen Schrödinger-Gleichung für die Modulation der periodischen Wellen, und die ldquorlangmodulierten Wellenrdquo sowie die ldquormodulierten Langwellenrdquo werden aufgezeigt. Weiters wird die Existenz und die Stabilität der Stokes-Wellen im System untersucht. Anschließend werden die progressiven Wellenlösungen der Langwellengleichungen diskutiert. Eines der wichtigsten Ergebnisse dieser Arbeit ist, daß die Gleichungen des Ausbreitungsraumes keine partiellen Differentialgleichungen mehr sind, sondern Ausdrücke von Pseudo-Differentialoperatoren.