43 resultados para Journalism Theories
Resumo:
A novel test of recent theories of the origin of optical activity has been designed based on the inclusion of certain alkyl 2-methylhexanoates into urea channels.
Resumo:
There are essentially two different phenomenological models available to describe the interdiffusion process in binary systems in the olid state. The first of these, which is used more frequently, is based on the theory of flux partitioning. The second model, developed much more recently, uses the theory of dissociation and reaction. Although the theory of flux partitioning has been widely used, we found that this theory does not account for the mobility of both species and therefore is not suitable for use in most interdiffusion systems. We have first modified this theory to take into account the mobility of both species and then further extended it to develop relations or the integrated diffusion coefficient and the ratio of diffusivities of the species. The versatility of these two different models is examined in the Co-Si system with respect to different end-member compositions. From our analysis, we found that the applicability of the theory of flux partitioning is rather limited but the theory of dissociation and reaction can be used in any binary system.
Resumo:
We report the results of two studies of aspects of the consistency of truncated nonlinear integral equation based theories of freezing: (i) We show that the self-consistent solutions to these nonlinear equations are unfortunately sensitive to the level of truncation. For the hard sphere system, if the Wertheim–Thiele representation of the pair direct correlation function is used, the inclusion of part but not all of the triplet direct correlation function contribution, as has been common, worsens the predictions considerably. We also show that the convergence of the solutions found, with respect to number of reciprocal lattice vectors kept in the Fourier expansion of the crystal singlet density, is slow. These conclusions imply great sensitivity to the quality of the pair direct correlation function employed in the theory. (ii) We show the direct correlation function based and the pair correlation function based theories of freezing can be cast into a form which requires solution of isomorphous nonlinear integral equations. However, in the pair correlation function theory the usual neglect of the influence of inhomogeneity of the density distribution on the pair correlation function is shown to be inconsistent to the lowest order in the change of density on freezing, and to lead to erroneous predictions. The Journal of Chemical Physics is copyrighted by The American Institute of Physics.
Resumo:
We report the results of two studies of aspects of the consistency of truncated nonlinear integral equation based theories of freezing: (i) We show that the self-consistent solutions to these nonlinear equations are unfortunately sensitive to the level of truncation. For the hard sphere system, if the Wertheim–Thiele representation of the pair direct correlation function is used, the inclusion of part but not all of the triplet direct correlation function contribution, as has been common, worsens the predictions considerably. We also show that the convergence of the solutions found, with respect to number of reciprocal lattice vectors kept in the Fourier expansion of the crystal singlet density, is slow. These conclusions imply great sensitivity to the quality of the pair direct correlation function employed in the theory. (ii) We show the direct correlation function based and the pair correlation function based theories of freezing can be cast into a form which requires solution of isomorphous nonlinear integral equations. However, in the pair correlation function theory the usual neglect of the influence of inhomogeneity of the density distribution on the pair correlation function is shown to be inconsistent to the lowest order in the change of density on freezing, and to lead to erroneous predictions. The Journal of Chemical Physics is copyrighted by The American Institute of Physics.
Resumo:
It is shown that the Fayet-Illiopoulos D term in N= 1 supersymmetric spontaneously broken U( 1) gauge theories may get one-loop corrections, even when trace U( 1) charges are zero. However, these corrections are only logarithmically divergent and hence do not affect the naturalness of the theory.
Resumo:
We analyze aspects of symmetry breaking for Moyal spacetimes within a quantization scheme which preserves the twisted Poincare´ symmetry. Towards this purpose, we develop the Lehmann-Symanzik- Zimmermann (LSZ) approach for Moyal spacetimes. The latter gives a formula for scattering amplitudes on these spacetimes which can be obtained from the corresponding ones on the commutative spacetime. This formula applies in the presence of spontaneous breakdown of symmetries as well. We also derive Goldstone’s theorem on Moyal spacetime. The formalism developed here can be directly applied to the twisted standard model.
Resumo:
The two-dimensional,q-state (q>4) Potts model is used as a testing ground for approximate theories of first-order phase transitions. In particular, the predictions of a theory analogous to the Ramakrishnan-Yussouff theory of freezing are compared with those of ordinary mean-field (Curie-Wiess) theory. It is found that the Curie-Weiss theory is a better approximation than the Ramakrishnan-Yussouff theory, even though the former neglects all fluctuations. It is shown that the Ramakrishnan-Yussouff theory overestimates the effects of fluctuations in this system. The reasons behind the failure of the Ramakrishnan-Yussouff approximation and the suitability of using the two-dimensional Potts model as a testing ground for these theories are discussed.
Resumo:
Values of Ko, Flory constant related to unperturbed dimensions, are evaluated for methyl methacrylate-acrylonitrile random copolymers using Flory-Fox, Kurata-Stockmayer and Inagaki-Ptitsyn methods and compared with the Ko values obtained by Stockmayer-Fixman method. Ko values are seen to be less in solvents which have large a (Mark-Houwink exponent) values. A correlation between Ko and a is developed to arrive at a more reliable estimate of Ko for this copolymer system.
Resumo:
It is shown that the Fayet-Illiopoulos D term in N= 1 supersymmetric spontaneously broken U( 1) gauge theories may get one-loop corrections, even when trace U( 1) charges are zero. However, these corrections are only logarithmically divergent and hence do not affect the naturalness of the theory.
Resumo:
The problem of an infinite circular sandwich shell subjected to an a\isymmetric radial line load is investigated using three-dimensional elasticity theory, shell core method, and sandwich shell theory due to Fulton and Schmidt. A comparison of the stresses and displacements with an exact elasticity solution is carried out for various shell parameters in order to clearly bring out the limitations of sandwich shell theories of Fulton and Schmidt as well as the shell core solution.
Resumo:
The one-loop quadratically divergent mass corrections in globally supersymmetric gauge theories with spontaneously broken abelian and non-abelian gauge symmetry are studied. Quadratically divergent mass corrections are found to persist in an abelian model with an ABJ anomaly. However, additional supermultiplets necessary to cancel the ABJ anomaly, turn out to be sufficient to eliminate the quadratic divergences as well, rendering the theory natural. Quadratic divergences are shown to vanish also in the case of an anomaly free model with spontaneously broken non-abelian gauge symmetry.
Resumo:
Superconducting and magnetically long-range ordered states were believed to be mutually exclusive phenomena. The discovery of rare-earth compounds in recent years, which exhibit both superconductivity and magnetic ordering (ferromagnetic, antiferromagnetic or sinusoidal), has led to considerable theoretical and experimental work on such systems. In the present article, we give a review of various theoretical models and important experimental results. In the theoretical sections, we start with the Abrikosov-Gorkov pair breaking theory for dilute alloys and discuss its improvement in the work of Müller-Hartmann and Zittartz. Then, in the context of magnetic superconductors, various microscopic theories that have been advanced are presented. These predict re-entrant behaviour in some systems (ferromagnetic superconductors) and coexistence regions in others (particularly antiferromagnetic superconductors). Following this, phenomenological generalized Ginzburg-Landau theories for two kinds of orders (superconducting and magnetic) are presented. A section dealing with renormalization group analysis of phase diagrams in magnetic superconductors is given. In experimental sections, the properties of each rare-earth compounds (ternary as well as some tetranery) are reviewed. These involve susceptibility, heat capacity, resistivity, upper critical field, neutron scattering and magnetic resonance measurements. The anomalous behaviour of the upper critical field of antiferromagnetic superconductors near the Néel temperature is discussed both in theory sections and experimental section for various systems.
Resumo:
Mathematical models, for the stress analysis of symmetric multidirectional double cantilever beam (DCB) specimen using classical beam theory, first and higher-order shear deformation beam theories, have been developed to determine the Mode I strain energy release rate (SERR) for symmetric multidirectional composites. The SERR has been calculated using the compliance approach. In the present study, both variationally and nonvariationally derived matching conditions have been applied at the crack tip of DCB specimen. For the unidirectional and cross-ply composite DCB specimens, beam models under both plane stress and plane strain conditions in the width direction are applicable with good performance where as for the multidirectional composite DCB specimen, only the beam model under plane strain condition in the width direction appears to be applicable with moderate performance. Among the shear deformation beam theories considered, the performance of higher-order shear deformation beam theory, having quadratic variation for transverse displacement over the thickness, is superior in determining the SERR for multidirectional DCB specimen.