193 resultados para Image compression
Resumo:
In prediction phase, the hierarchical tree structure obtained from the test image is used to predict every central pixel of an image by its four neighboring pixels. The prediction scheme generates the predicted error image, to which the wavelet/sub-band coding algorithm can be applied to obtain efficient compression. In quantization phase, we used a modified SPIHT algorithm to achieve efficiency in memory requirements. The memory constraint plays a vital role in wireless and bandwidth-limited applications. A single reusable list is used instead of three continuously growing linked lists as in case of SPIHT. This method is error resilient. The performance is measured in terms of PSNR and memory requirements. The algorithm shows good compression performance and significant savings in memory. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
A novel approach for lossless as well as lossy compression of monochrome images using Boolean minimization is proposed. The image is split into bit planes. Each bit plane is divided into windows or blocks of variable size. Each block is transformed into a Boolean switching function in cubical form, treating the pixel values as output of the function. Compression is performed by minimizing these switching functions using ESPRESSO, a cube based two level function minimizer. The minimized cubes are encoded using a code set which satisfies the prefix property. Our technique of lossless compression involves linear prediction as a preprocessing step and has compression ratio comparable to that of JPEG lossless compression technique. Our lossy compression technique involves reducing the number of bit planes as a preprocessing step which incurs minimal loss in the information of the image. The bit planes that remain after preprocessing are compressed using our lossless compression technique based on Boolean minimization. Qualitatively one cannot visually distinguish between the original image and the lossy image and the value of mean square error is kept low. For mean square error value close to that of JPEG lossy compression technique, our method gives better compression ratio. The compression scheme is relatively slower while the decompression time is comparable to that of JPEG.
Resumo:
We propose the design and implementation of hardware architecture for spatial prediction based image compression scheme, which consists of prediction phase and quantization phase. In prediction phase, the hierarchical tree structure obtained from the test image is used to predict every central pixel of an image by its four neighboring pixels. The prediction scheme generates an error image, to which the wavelet/sub-band coding algorithm can be applied to obtain efficient compression. The software model is tested for its performance in terms of entropy, standard deviation. The memory and silicon area constraints play a vital role in the realization of the hardware for hand-held devices. The hardware architecture is constructed for the proposed scheme, which involves the aspects of parallelism in instructions and data. The processor consists of pipelined functional units to obtain the maximum throughput and higher speed of operation. The hardware model is analyzed for performance in terms throughput, speed and power. The results of hardware model indicate that the proposed architecture is suitable for power constrained implementations with higher data rate
Resumo:
Aluminium rings of varying Image Image diameter ratios machined from extruded solid bars, were subjected to static axial compression. Etched diametral planes of deformed cylinders revealed the existence of shear bands, the configuration of which were found to change with initial specimen geometry and deformation.
Resumo:
Usually digital image forgeries are created by copy-pasting a portion of an image onto some other image. While doing so, it is often necessary to resize the pasted portion of the image to suit the sampling grid of the host image. The resampling operation changes certain characteristics of the pasted portion, which when detected serves as a clue of tampering. In this paper, we present deterministic techniques to detect resampling, and localize the portion of the image that has been tampered with. Two of the techniques are in pixel domain and two others in frequency domain. We study the efficacy of our techniques against JPEG compression and subsequent resampling of the entire tampered image.
Resumo:
The interest in low bit rate video coding has increased considerably. Despite rapid progress in storage density and digital communication system performance, demand for data-transmission bandwidth and storage capacity continue to exceed the capabilities of available technologies. The growth of data-intensive digital audio, video applications and the increased use of bandwidth-limited media such as video conferencing and full motion video have not only sustained the need for efficient ways to encode analog signals, but made signal compression central to digital communication and data-storage technology. In this paper we explore techniques for compression of image sequences in a manner that optimizes the results for the human receiver. We propose a new motion estimator using two novel block match algorithms which are based on human perception. Simulations with image sequences have shown an improved bit rate while maintaining ''image quality'' when compared to conventional motion estimation techniques using the MAD block match criteria.
Resumo:
We present a technique for irreversible watermarking approach robust to affine transform attacks in camera, biomedical and satellite images stored in the form of monochrome bitmap images. The watermarking approach is based on image normalisation in which both watermark embedding and extraction are carried out with respect to an image normalised to meet a set of predefined moment criteria. The normalisation procedure is invariant to affine transform attacks. The result of watermarking scheme is suitable for public watermarking applications, where the original image is not available for watermark extraction. Here, direct-sequence code division multiple access approach is used to embed multibit text information in DCT and DWT transform domains. The proposed watermarking schemes are robust against various types of attacks such as Gaussian noise, shearing, scaling, rotation, flipping, affine transform, signal processing and JPEG compression. Performance analysis results are measured using image processing metrics.
Resumo:
Conventional encryption techniques are usually applicable for text data and often unsuited for encrypting multimedia objects for two reasons. Firstly, the huge sizes associated with multimedia objects make conventional encryption computationally costly. Secondly, multimedia objects come with massive redundancies which are useful in avoiding encryption of the objects in their entirety. Hence a class of encryption techniques devoted to encrypting multimedia objects like images have been developed. These techniques make use of the fact that the data comprising multimedia objects like images could in general be seggregated into two disjoint components, namely salient and non-salient. While the former component contributes to the perceptual quality of the object, the latter only adds minor details to it. In the context of images, the salient component is often much smaller in size than the non-salient component. Encryption effort is considerably reduced if only the salient component is encrypted while leaving the other component unencrypted. A key challenge is to find means to achieve a desirable seggregation so that the unencrypted component does not reveal any information about the object itself. In this study, an image encryption approach that uses fractal structures known as space-filling curves- in order to reduce the encryption overload is presented. In addition, the approach also enables a high quality lossy compression of images.
Resumo:
We report the results of an experimental and numerical study conducted on a closed-cell aluminium foam that was subjected to uniaxial compression with lateral constraint. X-ray computed tomography was utilized to gain access into the three-dimensional (3-D) structure of the foam and some aspects of the deformation mechanisms. A series of advanced 3-D image analyses are conducted on the 3-D images aimed at characterizing the strain localization regions. We identify the morphological/geometrical features that are responsible for the collapse of the cells and the strain localization. A novel mathematical approach based on a Minkowski tensor analysis along with the mean intercept length technique were utilized to search for signatures of anisotropy across the foam sample and its evolution as a function of loading. Our results show that regions with higher degrees of anisotropy in the undeformed foam have a tendency to initiate the onset of cell collapse. Furthermore, we show that strain hardening occurs predominantly in regions with large cells and high anisotropy. We combine the finite element method with the tomographic images to simulate the mechanical response of the foam. We predict further deformation in regions where the foam is already deformed. Crown Copyright (C) 2012 Published by Elsevier Ltd. on behalf of Acta Materialia Inc. All rights reserved.
Resumo:
In this paper, we present a machine learning approach to measure the visual quality of JPEG-coded images. The features for predicting the perceived image quality are extracted by considering key human visual sensitivity (HVS) factors such as edge amplitude, edge length, background activity and background luminance. Image quality assessment involves estimating the functional relationship between HVS features and subjective test scores. The quality of the compressed images are obtained without referring to their original images ('No Reference' metric). Here, the problem of quality estimation is transformed to a classification problem and solved using extreme learning machine (ELM) algorithm. In ELM, the input weights and the bias values are randomly chosen and the output weights are analytically calculated. The generalization performance of the ELM algorithm for classification problems with imbalance in the number of samples per quality class depends critically on the input weights and the bias values. Hence, we propose two schemes, namely the k-fold selection scheme (KS-ELM) and the real-coded genetic algorithm (RCGA-ELM) to select the input weights and the bias values such that the generalization performance of the classifier is a maximum. Results indicate that the proposed schemes significantly improve the performance of ELM classifier under imbalance condition for image quality assessment. The experimental results prove that the estimated visual quality of the proposed RCGA-ELM emulates the mean opinion score very well. The experimental results are compared with the existing JPEG no-reference image quality metric and full-reference structural similarity image quality metric.
Resumo:
Uniaxial compression experiments on 0.3, 1 and 3 mu m diameter micropillars of a Zr-based bulk metallic glass in as-cast, shot-peened and structurally relaxed conditions were conducted. Shear band formation and stable propagation is observed to be the plastic deformation mode in all cases, with no detectable difference in yield strength according to either size or condition. The limitations of uniaxial compression tests in assessing the influence of various material conditions on plasticity, when it is inhomogeneous in nature, are illustrated.
Resumo:
Remote sensing provides a lucid and effective means for crop coverage identification. Crop coverage identification is a very important technique, as it provides vital information on the type and extent of crop cultivated in a particular area. This information has immense potential in the planning for further cultivation activities and for optimal usage of the available fertile land. As the frontiers of space technology advance, the knowledge derived from the satellite data has also grown in sophistication. Further, image classification forms the core of the solution to the crop coverage identification problem. No single classifier can prove to satisfactorily classify all the basic crop cover mapping problems of a cultivated region. We present in this paper the experimental results of multiple classification techniques for the problem of crop cover mapping of a cultivated region. A detailed comparison of the algorithms inspired by social behaviour of insects and conventional statistical method for crop classification is presented in this paper. These include the Maximum Likelihood Classifier (MLC), Particle Swarm Optimisation (PSO) and Ant Colony Optimisation (ACO) techniques. The high resolution satellite image has been used for the experiments.
Resumo:
The presence of folded solution conformations in the peptides Boc-Ala-(Aib-Ala)2-OMe, Boc-Val-(Aib-Val) 2-OMe, Boc-Ala-(Aib-Ala)3-OMe and Boc-Val-(Aib-Val)3-OMe has been established by 270MHz 1H NMR. Intramolecularly H-bonded NH groups have been identified using temperature and solvent dependence of NH chemical shifts and paramagnetic radical induced broadening of NH resonances. Both pentapeptides adopt 310 helical conformations possessing 3 intramolecular H-bonds in CDCl3 and (CD3)2SO. The heptapeptides favour helical structures with 5 H-bonds in CDCl3. In (CD3)2SO only 4 H-bonds are readily detected.