259 resultados para Heat transfer coefficient


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Capillary pumped loop (CPL) and loop heat pipe (LHP) are passive two-phase heat transport devices. They have been gaining importance as a part of the thermal control system of spacecraft. The evaporation heat transfer coefficient at the tooth-wick interface of an LHP or CPL has a significant impact on the evaporator temperature. It is also the main parameter in sizing of a CPL or LHP. Experimentally determined evaporation heat transfer coefficients from a three-port CPL with tubular axially grooved (TAG) evaporator and a TAG LHP with acetone, R-134A, and ammonia as working fluids are presented in this paper. The influences of working fluid, hydrodynamic blocks in the core, evaporator configuration (LHP or CPL), and adverse elevation (evaporator above condenser) on the heat transfer coefficient are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates numerically the heat transfer characteristics of confined slot jet impingement on a pin-fin heat sink. A variety of pin-fin heat sinks is investigated, and the resulting enhancement of heat transfer studied. The distribution of heat transfer coefficient on the top surface of the base plate and that along the fin height are examined. Both steady and pulsated jets are studied. It is observed that for a steady jet impingement on a pin-fin heat sink, the effective heat transfer coefficient increases with fin height, leading to a corresponding decrease in base plate temperature for the same heat flux. In the case of pulsated jets, the influence of pulse frequency and the Reynolds number is examined, and their effect on the effective heat transfer coefficient is studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of vibration on heat transfer from a horizontal copper cylinder, 0.344 in. in diameter and 6 in. long, was investigated. The cylinder was placed normal to an air stream and was sinusoidally vibrated in a direction perpendicular to the direction of the air stream. The flow velocity varied from 19 ft/s to 92 ft/s; the double amplitude of vibration from 0.75 cm to 3.2 cm, and the frequency of vibration from 200 to 2800 cycles/min. A transient technique was used to determine the heat transfer coefficients. The experimental data in the absence of vibration is expressed by NNu = 0.226 NRe0.6 in the range 2500 < NRe < 15 000. By imposing vibrational velocities as high as 20 per cent of the flow velocity, no appreciable change in the heat transfer coefficient was observed. An analysis using the resultant of the vibration and the flow velocity explains the observed phenomenon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analytical and numerical solutions of a general problem related to the radially symmetric inward spherical solidification of a superheated melt have been studied in this paper. In the radiation-convection type boundary conditions, the heat transfer coefficient has been taken as time dependent which could be infinite, at time,t=0. This is necessary, for the initiation of instantaneous solidification of superheated melt, over its surface. The analytical solution consists of employing suitable fictitious initial temperatures and fictitious extensions of the original region occupied by the melt. The numerical solution consists of finite difference scheme in which the grid points move with the freezing front. The numerical scheme can handle with ease the density changes in the solid and liquid states and the shrinkage or expansions of volumes due to density changes. In the numerical results, obtained for the moving boundary and temperatures, the effects of several parameters such as latent heat, Boltzmann constant, density ratios, heat transfer coefficients, etc. have been shown. The correctness of numerical results has also been checked by satisfying the integral heat balance at every timestep.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comprehensive model is developed for previous termheat transfernext term during previous termdropwise condensationnext term based on the assumption that previous termheat transfernext term takes place through the bare surface in between drops to form nuclei at nucleation sites during the waiting period required for nucleation. The dynamics of drop formation and surface renewal, and the presence of non-condensable gases in the vapour have been considered. The resulting equation expresses the dependence of the vapour-side previous termheat transfernext term coefficient on the previous termheatnext term flux, properties of the vapour, previous termcondensationnext term coefficient, mole fraction of non-condensable gases in the vapour, free area available for previous termcondensation,next term surface roughness and surface thermal properties. The equation is tested with the available data and the agreement is found to be satisfactory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we have first given a numerical procedure for the solution of second order non-linear ordinary differential equations of the type y″ = f (x;y, y′) with given initial conditions. The method is based on geometrical interpretation of the equation, which suggests a simple geometrical construction of the integral curve. We then translate this geometrical method to the numerical procedure adaptable to desk calculators and digital computers. We have studied the efficacy of this method with the help of an illustrative example with known exact solution. We have also compared it with Runge-Kutta method. We have then applied this method to a physical problem, namely, the study of the temperature distribution in a semi-infinite solid homogeneous medium for temperature-dependent conductivity coefficient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aerodynamic forces and fore-body convective surface heat transfer rates over a 60 degrees apex-angle blunt cone have been simultaneously measured at a nominal Mach number of 5.75 in the hypersonic shock tunnel HST2. An aluminum model incorporating a three-component accelerometer-based balance system for measuring the aerodynamic forces and an array of platinum thin-film gauges deposited on thermally insulating backing material flush mounted on the model surface is used for convective surface heat transfer measurement in the investigations. The measured value of the drag coefficient varies by about +/-6% from the theoretically estimated value based on the modified Newtonian theory, while the axi-symmetric Navier-Stokes computations overpredict the drag coefficient by about 9%. The normalized values of measured heat transfer rates at 0 degrees angle of attack are about 11% higher than the theoretically estimated values. The aerodynamic and the heat transfer data presented here are very valuable for the validation of CFD codes used for the numerical computation of How fields around hypersonic vehicles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effect of coolant gas injection in the stagnation region on the surface heat transfer rates and aerodynamic drag for a large angle blunt body flying at hypersonic Mach number is reported for two stagnation enthalpies. A 60° apex-angle blunt cone model is employed for this purpose with air injection at the nose through a hole of 2mm diameter. The convective surface heating rates and aerodynamic drag are measured simultaneously using surface mounted platinum thin film sensors and internally mounted accelerometer balance system, respectively. About 35–40% reduction in surface heating rates is observed in the vicinity of stagnation region whereas 15–25% reduction in surface heating rates is felt beyond the stagnation region at stagnation enthalpy of 1.6MJ/kg. The aerodynamic drag expressed in terms of drag coefficient is found to increase by 20% due to the air injection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work involves a computational study of soot formation and transport in case of a laminar acetylene diffusion flame perturbed by a co nvecting line vortex. The topology of the soot contours (as in an earlier experimental work [4]) have been investigated. More soot was produced when vortex was introduced from the air si de in comparison to a fuel side vortex. Also the soot topography was more diffused in case of the air side vortex. The computational model was found to be in good agreement with the ex perimental work [4]. The computational simulation enabled a study of the various parameters affecting soot transport. Temperatures were found to be higher in case of air side vortex as compared to a fuel side vortex. In case of the fuel side vortex, abundance of fuel in the vort ex core resulted in stoichiometrically rich combustion in the vortex core, and more discrete so ot topography. Overall soot production too was low. In case of the air side vortex abundan ce of air in the core resulted in higher temperatures and more soot yield. Statistical techniques like probability density fun ction, correlation coefficient and conditional probability function were introduced to explain the transient dependence of soot yield and transport on various parameters like temperature, a cetylene concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study is made on the flow and heat transfer of a viscous fluid confined between two parallel disks. The disks are allowed to rotate with different time dependent angular velocities, and the upper disk is made to approach the lower one with a constant speed. Numerical solutions of the governing parabolic partial differential equations are obtained through a fourth-order accurate compact finite difference scheme. The normal forces and torques that the fluid exerts on the rotating surfaces are obtained at different nondimensional times for different values of the rate of squeezing and disk angular velocities. The temperature distribution and heat transfer are also investigated in the present analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The flow and heat transfer problem in the boundary layer induced by a continuous moving surface is important in many manufacturing processes in industry such as the boundary layer along material handling conveyers, the aerodynamic extrusion of plastic sheet, the cooling of an infinite metalic plate in a cooling bath (which may also be electrolyte). Glass blowing, continuous casting and spinning of fibres also involve the flow due to a stretching surface. Sakiadis [1] was the first to study the flow induced by a semi-infinite moving wall in an ambient fluid. On the other hand, Crane [2] first studied the flow over a linearly stretching sheet in an ambient fluid. Subsequently, Crane [3] also investigated the corresponding heat transfer problem. Since then several authors [4-8] have studied various aspects of this problem such as the effects of mass transfer, variable wall temperature, constant heat flux, magnetic field etc. Recently, Andersson [9] has obtained an exact solution of the Navier-Stokes equations for the MHD flow over a linearly stretching sheet in an ambient fluid. Also Chiam [10] has studied the heat transfer with variable thermal conductivity on a stretching sheet when the velocities of the sheet and the free stream are equal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unsteady magnetohydrodynamic viscous flow and heat transfer of Newtonian fluids induced by an impulsively stretched plane surface in two lateral directions are studied by using an analytic technique, namely, the homotopy method. The analytic series solution presented here is highly accurate and uniformly valid for all time in the entire region. The effects of the stretching ratio and the magnetic field on the surface shear stresses and heat transfer are studied. The surface shear stresses in x- and y-directions and the surface heat transfer are enchanced by increasing stretching ratio for a fixed value of the magnetic parameter. For a fixed stretching ratio, the surface shear stresses increase with the magnetic parameter, but the heat transfer decreases. The Nusselt number takes longer time to reach the steady state than the skin friction coefficients. There is a smooth transition from the initial unsteady state to the steady state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nature of surface and subsurface reactions in polymer combustion is poorly underst0od.l During the burning of thermoplastic polymers a melt layer is observed on the surface, and below the melt layer there is thermal wave penetration. But the exact thickness of the melt layer and the thickness of the thermal wave penetration have not been precisely measured, although a qualitative idea has been given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heat transfer in a MHD flow between two infinite eccentric disks rotating with different speeds is considered when the plates are maintained at different temperatures. The results for the corresponding nonmagnetic case presented wrongly by Banerjee and Borkakati [7] are corrected. It is observed that the eccentric rotation reduces the heat transfer on the disks.