86 resultados para Forced expiratory volume
Resumo:
Laminar forced convection of nanofluids in a vertical channel with symmetrically mounted rib heaters on surfaces of opposite walls is numerically studied. The fluid flow and heat transfer characteristics are examined for various Reynolds numbers and nanoparticles volume fractions of water-Al2O3 nanofluid. The flow exhibits various structures with varying Reynolds number. Even though the geometry and heating is symmetric with respect to a channel vertical mid-plane, asymmetric flow and heat transfer are found for Reynolds number greater than a critical value. Introduction of nanofluids in the base fluid delays the flow solution bifurcation point, and the critical Reynolds number increases with increasing nanoparticle volume fraction. A skin friction coefficient along the solid-fluid interfaces increases and decreases sharply along the bottom and top faces of the heaters, respectively, due to sudden acceleration and deceleration of the fluid at the respective faces. The skin friction coefficient, as well as Nusselt numbers in the channel, increase with increasing volume fraction of nanoparticles.
Resumo:
We present a generalization of the finite volume evolution Galerkin scheme [M. Lukacova-Medvid'ova,J. Saibertov'a, G. Warnecke, Finite volume evolution Galerkin methods for nonlinear hyperbolic systems, J. Comp. Phys. (2002) 183 533-562; M. Luacova-Medvid'ova, K.W. Morton, G. Warnecke, Finite volume evolution Galerkin (FVEG) methods for hyperbolic problems, SIAM J. Sci. Comput. (2004) 26 1-30] for hyperbolic systems with spatially varying flux functions. Our goal is to develop a genuinely multi-dimensional numerical scheme for wave propagation problems in a heterogeneous media. We illustrate our methodology for acoustic waves in a heterogeneous medium but the results can be generalized to more complex systems. The finite volume evolution Galerkin (FVEG) method is a predictor-corrector method combining the finite volume corrector step with the evolutionary predictor step. In order to evolve fluxes along the cell interfaces we use multi-dimensional approximate evolution operator. The latter is constructed using the theory of bicharacteristics under the assumption of spatially dependent wave speeds. To approximate heterogeneous medium a staggered grid approach is used. Several numerical experiments for wave propagation with continuous as well as discontinuous wave speeds confirm the robustness and reliability of the new FVEG scheme.
Resumo:
A general mathematical model for forced air precooling of spherical food products in bulk is developed. The food products are arranged inline to form a rectangular parallelepiped. Chilled air is blown along the height of the package. The governing equations for the transient two-dimensional conduction with internal heat generation in the product, simultaneous heat and mass transfer at the product-air interface and one-dimensional transient energy and species conservation equations for the moist air are solved numerically using finite difference methods. Results are presented in the form of time-temperature histories. Experiments are conducted with model foods in a laboratory scale air precooling tunnel. The agreement between the theoretical and experimental results is found to be good. In general, a single product analysis fails to predict the precooling characteristics of bulk loads of food products. In the range of values investigated, the respiration heat is found to have a negligible effect.
Resumo:
An artificial neural network (ANN) is presented to predict a 28-day compressive strength of a normal and high strength self compacting concrete (SCC) and high performance concrete (HPC) with high volume fly ash. The ANN is trained by the data available in literature on normal volume fly ash because data on SCC with high volume fly ash is not available in sufficient quantity. Further, while predicting the strength of HPC the same data meant for SCC has been used to train in order to economise on computational effort. The compressive strengths of SCC and HPC as well as slump flow of SCC estimated by the proposed neural network are validated by experimental results.
Resumo:
The thermal boundary layer along an isothermal cylinder in a porous 3edium is studied numerically by a finite difference scheme and also using the method of extended perturbation series. The series in terms of the transverse curvature parameter ξ extended to seven terms and is subsequently improved by applying the Shanks transformation twice and thrice, respectively. Results for heat transfer characteristics are found in very good agreement.
Resumo:
In the present paper an exact similar solution of the Navier-Stokes equation for unsteady flow of a dilute suspension in a semi-infinite contracting or expanding circular pipe is presented. The effects of the Schmidt number (Sc), Reynolds number (|ε|), the volume fraction (α) and the relaxation time (τ) of the particulate phase on the flow characteristics are examined. The presence of the solid particles has been observed to influence the flow behaviour significantly. These solutions are valid down to the state of a completely collapsed pipe, since the nonlinearity is retained fully. The results may help understanding the flow near the heart and certain forced contractions or expansions of valved veins.
Resumo:
Plasticity in amorphous alloys is associated with strain softening, induced by the creation of additional free volume during deformation. In this paper, the role of free volume, which was a priori in the material, on work softening was investigated. For this, an as-cast Zr-based bulk metallic glass (BMG) was systematically annealed below its glass transition temperature, so as to reduce the free volume content. The bonded-interface indentation technique is used to generate extensively deformed and well defined plastic zones. Nanoindentation was utilized to estimate the hardness of the deformed as well as undeformed regions. The results show that the structural relaxation annealing enhances the hardness and that both the subsurface shear band number density and the plastic zone size decrease with annealing time. The serrations in the nanoindentation load-displacement curves become smoother with structural relaxation. Regardless of the annealing condition, the nanohardness of the deformed regions is similar to 12-15% lower, implying that the prior free volume only changes the yield stress (or hardness) but not the relative flow stress (or the extent of strain softening). Statistical distributions of the nanohardness obtained from deformed and undeformed regions have no overlap, suggesting that shear band number density has no influence on the plastic characteristics of the deformed region.
Resumo:
A numerical scheme is presented for accurate simulation of fluid flow using the lattice Boltzmann equation (LBE) on unstructured mesh. A finite volume approach is adopted to discretize the LBE on a cell-centered, arbitrary shaped, triangular tessellation. The formulation includes a formal, second order discretization using a Total Variation Diminishing (TVD) scheme for the terms representing advection of the distribution function in physical space, due to microscopic particle motion. The advantage of the LBE approach is exploited by implementing the scheme in a new computer code to run on a parallel computing system. Performance of the new formulation is systematically investigated by simulating four benchmark flows of increasing complexity, namely (1) flow in a plane channel, (2) unsteady Couette flow, (3) flow caused by a moving lid over a 2D square cavity and (4) flow over a circular cylinder. For each of these flows, the present scheme is validated with the results from Navier-Stokes computations as well as lattice Boltzmann simulations on regular mesh. It is shown that the scheme is robust and accurate for the different test problems studied.
Critical Evaluation of Determining Swelling Pressure by Swell-Load Method and Constant Volume Method
Resumo:
For any construction activity in expansive soils, determination of swelling pressure/heave is an essential step. Though many attempts have been made to develop laboratory procedures by using the laboratory one-dimensional oedometer to determine swelling pressure of expansive soils, they are reported to yield varying results. The main reason for these variations could be heterogeneous moisture distribution of the sample over its thickness. To overcome this variation the experimental procedure should be such that the soil gets fully saturated. Attempts were made to introduce vertical sand drains in addition to the top and bottom drains. In this study five and nine vertical sand drains were introduced to experimentally find out the variations in the swell and swelling pressure. The variations in the moisture content at middle, top, and bottom of the sample in the oedometer test are also reported. It is found that swell-load method is better as compared to zero-swell method. Further, five number of vertical sand drains are found to be sufficient to obtain uniform moisture content distribution.
Resumo:
In the present paper an exact similar solution of the Navier-Stokes equation for unsteady flow of a dilute suspension in a semi-infinite contracting or expanding circular pipe is presented. The effects of the Schmidt number (Sc), Reynolds number (|ε|), the volume fraction (α) and the relaxation time (τ) of the particulate phase on the flow characteristics are examined. The presence of the solid particles has been observed to influence the flow behaviour significantly. These solutions are valid down to the state of a completely collapsed pipe, since the nonlinearity is retained fully. The results may help understanding the flow near the heart and certain forced contractions or expansions of valved veins.
Resumo:
Analytical solutions are presented for the effectiveness factor of a zeroth-order reaction with volume change and nonuniform catalyst activity profile in slab, cylinder and spherical pellets. The possibility of shape normalization is considered for a variety of activity profiles and pellet shapes. When the catalyst activity at the external surface of the pellet is non-zero, shape normalization is obtained, which makes the asymptotic behavior of the effectiveness factor identical for small and large values of Thiele modulus, however, the normalization can lead to significant errors, particularly for the case of activity profiles decreasing towards the outer surface of the catalyst.
Resumo:
A residual-based strategy to estimate the local truncation error in a finite volume framework for steady compressible flows is proposed. This estimator, referred to as the -parameter, is derived from the imbalance arising from the use of an exact operator on the numerical solution for conservation laws. The behaviour of the residual estimator for linear and non-linear hyperbolic problems is systematically analysed. The relationship of the residual to the global error is also studied. The -parameter is used to derive a target length scale and consequently devise a suitable criterion for refinement/derefinement. This strategy, devoid of any user-defined parameters, is validated using two standard test cases involving smooth flows. A hybrid adaptive strategy based on both the error indicators and the -parameter, for flows involving shocks is also developed. Numerical studies on several compressible flow cases show that the adaptive algorithm performs excellently well in both two and three dimensions.