383 resultados para Electric transport


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Negative differential resistance (NDR) in current-voltage (I-V) characteristics and apparent colossal electroresistance were observed in Gd0.5Sr0.5MnO3 single crystals at low temperatures. The continuous dc I-V measurements showed a marked thermal drift. In addition, temperature of the sample surface was found to be significantly higher than that of the base at high applied currents. Two different strategies namely estimation and diminution of the Joule heating (pulsed I-V measurements) were employed to investigate its role in the electric transport properties. Our experiments reveal that the NDR in Gd0.5Sr0.5MnO3 is a consequence of Joule heating rather than the melting of charge order. (C) 2010 American Institute of Physics. doi:10.1063/1.3486221]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electric field activated nonlinear transport is investigated in polypyrrole thin film in both in-plane and out-of-plane geometries down to 5 K and strong anisotropy is observed. A morphological model is suggested to explain the anisotropy through inter-chain and intra-chain transport. The deviation from the variable range hopping at low temperature is accounted by fluctuation assisted transport. From Zabrodaskii plots, it is found that electric field can tune the transport from insulating to metallic regime. Glazman-Matveev model is used to describe the nonlinear conduction. Field scaling analysis shows that conductance data at different temperature falls on to a single curve. Nonlinearity exponent, m(T) and characteristic length, L-E are estimated to characterize the transport in both the geometries. (C) 2013 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comparative investigation of charge transport properties is presented, for polymeric [poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)], single-wall carbon nanotube (SWNT) and inorganic (indium tin oxide, ITO), transparent conducting electrodes. The polymeric and nanotube systems show hopping transport at low temperatures, in contrast with the disordered-metal transport in ITO. The low temperature magnetotransport (up to 11 T) and high electric-field transport (up to 500 V/cm) indicate the significant role of nanoscopic scale disorder for charge transport in polymer and nanotube based systems. The results show that characteristic length scales like localization length correlates with the nanomorphology in these systems. Further, the high frequency conductivity measurements (up to 30 MHz) in PEDOT:PSS and SWNT follow the extended pair approximation model [σ(ω)=σ(0)[1+(ω/ω0)s].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the concept of energy-dependent effective field intensity, electron transport coefficients in nitrogen have been determined in E times B fields (E = electric field intensity, B = magnetic flux density) by the numerical solution of the Boltzmann transport equation for the energy distribution of electrons. It has been observed that as the value of B/p (p = gas pressure) is increased from zero, the perpendicular drift velocity increased linearly at first, reaches a maximum value, and then decreases with increasing B/p. In general, the electron mean energy is found to be a function of Eavet/p( Eavet = averaged effective electric field intensity) only, but the other transport coefficients, such as transverse drift velocity, perpendicular drift velocity, and the Townsend ionization coefficient, are functions of both E/p and B/p.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the growth of nanowires of the charge transfer complex tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) with diameters as low as 130 nm and show that such nanowires can show Peierls transitions at low temperatures. The wires of sub-micron length were grown between two prefabricated electrodes (with sub-micron gap) by vapor phase growth from a single source by applying an electric field between the electrodes during the growth process. The nanowires so grown show a charge transfer ratio similar to 0.57, which is close to that seen in bulk crystals. Below the transition the transport is strongly nonlinear and can be interpreted as originating from de-pinning of CDW that forms at the Peierls transition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The frequency and temperature dependence of the dielectric constant and the electrical conductivity of the transparent glasses in the composition 0.5Cs(2)O-0.5Li(2)O-3B(2)O(3) (CLBO) were investigated in the 100 Hz - 10 MHz frequency range. The dielectric constant for the as-quenched glass increased with increasing temperature, exhibiting anomalies in the vicinity of the glass transition and crystallization temperatures. The temperature coefficient of dielectric constant was estimated (35 +/- 2 ppm. K-1) using Havinga's formula. The dielectric loss at 313 K is 0.005 +/- 0.0005 at all the frequencies understudy. The activation energy associated with the electrical relaxation determined from the electric modulus spectra was found to be 1.73 +/- 0.05 eV, close to that of the activation energy obtained for DC conductivity (1.6 +/- 0.06 eV). The frequency dependent electrical conductivity was analyzed using Jonscher's power law. The combination of these dielectric characteristics suggests that these are good candidates for electrical energy storage device applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transparent glasses in the system 0.5Li(2)O-0.5M(2)O-2B(2)O(3) (M = Li, Na and K) were fabricated via the conventional melt quenching technique. The amorphous and glassy nature of the samples was confirmed via the X-ray powder diffraction and the differential scanning calorimetry, respectively. The frequency and temperature dependent characteristics of the dielectric relaxation and the electrical conductivity were investigated in the 100 Hz-10 MHz frequency range. The imaginary part of the electric modulus spectra was modeled using an approximate solution of Kohrausch-Williams-Watts relation. The stretching exponent, (3, was found to be temperature independent for 0.5Li(2)O-0.5Na(2)O-2B(2)O(3) (LNBO) glasses. The activation energy associated with DC conduction was found to be higher (1.25 eV) for 0.5Li(2)O-0.5K(2)O-2B(2)O(3) (LKBO) glasses than that of the other glass systems under study. This is attributed to the mixed cation effect. (C) 2011 Elsevier By. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The review is concerned with models that analyze transport:processes that occur during microwave heating. Early models on microwave. heating used Lambert's law to describe the microwave power absorption. Over the last decade, models for transport processes have been developed with the microwave power derived from Maxwell's equations. Those models, primarily based on plane waves, have been used for analyzing microwave heating of solids, liquids, emulsions, microwave thawing and drying. The models illustrate phenomena such a resonances, hot spots, edge and runaway heating. The literature on microwave sintering, susceptor heating and microwave assisted synthesis is largely experimental in nature and only key issues are highlighted. To fully appreciate the models for microwave heating, a section on the theory of electromagnetic wave propagation is included, where expressions for the electric field in dielectric slabs and cylinders are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a simplified theory of carrier backscattering coefficient in a twofold degenerate asymmetric bilayer graphene nanoribbon (BGN) under the application of a low static electric field. We show that for a highly asymmetric BGN(Delta = gamma), the density of states in the lower subband increases more that of the upper, in which Delta and gamma are the gap and the interlayer coupling constant, respectively. We also demonstrate that under the acoustic phonon scattering regime, the formation of two distinct sets of energy subbands signatures a quantized transmission coefficient as a function of ribbon width and provides an extremely low carrier reflection coefficient for a better Landauer conductance even at room temperature. The well-known result for the ballistic condition has been obtained as a special case of the present analysis under certain limiting conditions which forms an indirect validation of our theoretical formalism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A system of transport equations have been obtained for plasma of electrons and having a background of positive ions in the presence of an electric and magnetic field. The starting kinetic equation is the well-known Landau kinetic equation. The distribution function of the kinetic equation has been expanded in powers of generalized Hermite polynomials and following Grad, a consistent set of transport equations have been obtained. The expressions for viscosity and heat conductivity have been deduced from the transport equation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The charge transport in sulfonated multi-wall carbon nanotube (sMWNT)-Nafion composite is reported. The scanning electron microscope images of the composite, at 1 and 10 wt % of sMWNT, show that the nanotubes are well dispersed in polymer matrix, with conductivity values of 0.005 and 3.2 S/cm, respectively; and the percolation threshold is nearly 0.42 wt. %. The exponent (∼0.25) of the temperature dependence of conductivity in both samples indicates Mott's variable range hopping (VRH) transport. The conductance in 1 wt. % sample increases by three orders of magnitude at high electric-fields, consistent with VRH model. The negative magnetoresistance in 10 wt. % sample is attributed to the forward interference scattering mechanism in VRH transport. The ac conductance in 1 wt. % sample is expressed by σ(ω)∝ωs, and the temperature dependence of s follows the correlated barrier hopping model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on the mass transport behavior of infinitely extended, continuous, and very thin metallic films under the influence of electric current. Application of direct current of high densities (> 10(8) A/m(2)) results in visible melting of thin film at only one of the electrodes, and the melt then flows towards the other electrode in a circularly symmetric fashion forming a microscale ring pattern. For the two tested thin film systems, namely Cr and Al, of thicknesses ranging from 4 to 20 nm, the above directional flow consistently occurred from cathode to anode and anode to cathode, respectively. Furthermore, application of alternating electric current results in flow of the liquid material from both the electrodes. The dependence of critical flow behavior parameters, such as flow direction, flow velocity, and evolution of the ring diameter, are experimentally determined. Analytical models based on the principles of electromigration in liquid-phase materials are developed to explain the experimental observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long range, continuous flow of liquid metals occurs upon application of an electric current. Here, we report experimental results elucidating the mechanism of current-induced liquid metal flow, and its dependence on substrate surface condition. It is shown that the observed flow is diffusion-controlled, with the flow-rate depending linearly on applied current density, indicating that it is driven by electromigration. The effective charge number for liquid electromigration, Z*, of several pure metals, such as Al, Bi, Ga, Sn, and Pb, were deduced from the experimental results and were found to be close to the elemental valency. With the exception of liquid Pb, Z* for all liquid metals tested in this study were positive, indicating that: (i) electron wind contributes much less to Z* in liquid metals than in solids, and (ii) with a few exceptions, liquid metals generally flow in the direction of the electric current. On smooth substrates which are wetted well by the liquid metal, flow occurs in a thin, continuous stream. On rough surfaces which are poorly wetted, on the other hand, discrete beads of liquid form, with mass transport between adjacent beads occurring by surface diffusion on the substrate. A rationale for the role of substrate roughness in fostering this observed transition in flow mechanism is presented. (C) 2014 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electric field activated charge transport is studied in the metal/polymer/metal device structure of electropolymerized polypyrrole down to 10 K with varying carrier density and disorder. Disorder induced nonlinear behaviour is observed in polypyrrole devices grown at room temperature which is correlated to delocalization of states. The slope parameter of currentvoltage characteristics (in log-log scale) increases as the temperature decreases, which indicates the onset of stronger field dependence. The field dependence of mobility becomes dominant as the carrier density decreases. The sharp dip in differential conductance indicates the localization of carriers at low temperatures which reduces the effective number of carriers involved in the transport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temperature and photo-dependent current-voltage characteristics are investigated in thin film devices of a hybrid-composite comprising of organic semiconductor poly(3,4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT: PSS) and cadmium telluride quantum dots (CdTe QDs). A detailed study of the charge injection mechanism in ITO/PEDOT: PSS-CdTe QDs/Al device exhibits a transition from direct tunneling to Fowler-Nordheim tunneling with increasing electric field due to formation of high barrier at the QD interface. In addition, the hybrid-composite exhibits a huge photoluminescence quenching compared to aboriginal CdTe QDs and high increment in photoconductivity (similar to 400%), which is attributed to the charge transfer phenomena. The effective barrier height (Phi(B) approximate to 0.68 eV) is estimated from the transition voltage and the possible origin of its variation with temperature and photo-illumination is discussed. (C) 2015 AIP Publishing LLC.