133 resultados para Decoders (Electronics)
Resumo:
Polymerized carbon nanotubes (CNTs) are promising materials for polymer-based electronics and electro-mechanical sensors. The advantage of having a polymer nanolayer on CNTs widens the scope for functionalizing it in various ways for polymer electronic devices. However, in this paper, we show for the first time experimentally that, due to a resistive polymer layer having carbon nanoparticle inclusions and polymerized carbon nanotubes, an interesting dynamics can be exploited. We first show analytically that the relative change in the resistance of a single isolated semiconductive nanotube is directly proportional to the axial and torsional dynamic strains, when the strains are small, whereas, in polymerized CNTs, the viscoelasticity of the polymer and its effective electrical polarization give rise to nonlinear effects as a function of frequency and bias voltage. A simplified formula is derived to account for these effects and validated in the light of experimental results. CNT–polymer-based channels have been fabricated on a PZT substrate. Strain sensing performance of such a one-dimensional channel structure is reported. For a single frequency modulated sine pulse as input, which is common in elastic and acoustic wave-based diagnostics, imaging, microwave devices, energy harvesting, etc, the performance of the fabricated channel has been found to be promising.
Resumo:
Run-time interoperability between different applications based on H.264/AVC is an emerging need in networked infotainment, where media delivery must match the desired resolution and quality of the end terminals. In this paper, we describe the architecture and design of a polymorphic ASIC to support this. The H.264 decoding flow is partitioned into modules, such that the polymorphic ASIC meets the design goals of low-power, low-area, high flexibility, high throughput and fast interoperability between different profiles and levels of H.264. We demonstrate the idea with a multi-mode decoder that can decode baseline, main and high profile H.264 streams and can interoperate at run.time across these profiles. The decoder is capable of processing frame sizes of up to 1024 times 768 at 30 fps. The design synthesized with UMC 0.13 mum technology, occupies 250 k gates and runs at 100 MHz.
Resumo:
Flexible constraint length channel decoders are required for software defined radios. This paper presents a novel scalable scheme for realizing flexible constraint length Viterbi decoders on a de Bruijn interconnection network. Architectures for flexible decoders using the flattened butterfly and shuffle-exchange networks are also described. It is shown that these networks provide favourable substrates for realizing flexible convolutional decoders. Synthesis results for the three networks are provided and a comparison is performed. An architecture based on a 2D-mesh, which is a topology having a nominally lesser silicon area requirement, is also considered as a fourth point for comparison. It is found that of all the networks considered, the de Bruijn network offers the best tradeoff in terms of area versus throughput.
Resumo:
The educational kit was developed for power electronics and drives. The need and purpose of this kit is to train engineers with current technology of digital control in power electronics. The DSP is the natural choice as it is able to perform high speed calculations required in power electronics. The educational kit consists of a DSP platform using TI DSP TMS320C50 starter kit, an inverter and an induction machine-dc machine set. A set of experiments have been prepared so that DSP programming can be learned easily in a smooth fashion. Here the application presented is open loop V/F control of three phase induction using sine pulse width modulation technique.
Resumo:
A software and a microprocessor based hardware for waveform synthesis using Walsh functions are described. The software is based on Walsh function generation using Hadamard matrices and on the truncated Walsh series expansion for the waveform to be synthesized. The hardware employs six microprocessor controlled programmable Walsh function generators (PWFGs) for generating the first six non-vanishing terms of the truncated Walsh series. Improved approximation to a given waveform may be achieved by employing additional PWFGs.
Resumo:
Results of performance measurement of a small cooling capacity laboratory model of an adsorption refrigeration system for thermal management of electronics are compiled. This adsorption cooler was built with activated carbon as the adsorbent and HFC 134a as the refrigerant to produce a cooling capacity under 5 W using waste heat up to 90 degrees C. The thermal compression process is obtained from an ensemble of four solid sorption compressors. Parametric study was conducted with cycle times of 16 and 20 min, heat source temperatures from 73 to 87 degrees C and cooling loads from 3 to 4.9W. Overall system performance is analyzed using two indicators, namely, cooling effectiveness and normalized exergetic efficiency. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper analyses the efficiency and productivity growth of Electronics industry, which is considered one of the vibrant and rapidly growing manufacturing industry sub-sectors of India in the liberalization era since 1991. The main objective of the paper is to examine the extent and growth of Total Factor Productivity (TFP) and its components namely, Technical Efficiency Change (TEC) and Technological Progress (TP) and its contribution to total output growth. In this study, the electronics industry is broadly classified into communication equipments, computer hardware, consumer electronics and other electronics, with the purpose of performing a comparative analysis of productivity growth for each of these sub-sectors for the time period 1993-2004. The paper found that the sub-sectors have improved in terms of economies of scale and contribution of capital.The change in technical efficiency and technological progress moved in reverse directions. Three of the four industry witnessed growth in the output primarily due to TFPG and the contribution of input growth to output growth had been negative/negligible, except for Computer hardware where contribution from both input growth and TFPG to output growth were prominent. The paper explored the possible reasons that addressed the issue of low technical efficiency and technological progress in the industry.
Resumo:
A highly transparent all ZnO thin film transistor (ZnO-TFT) with a transmittance of above 80% in the visible part of the spectrum, was fabricated by direct current magnetron sputtering, with a bottom gate configuration. The ZnO-TFT with undoped ZnO channel layers deposited on 300 nm Zn0.7Mg0.3O gate dielectric layers attains an on/off ratio of 104 and mobility of 20 cm2/V s. The capacitance-voltage (C−V) characteristics of the ZnO-TFT exhibited a transition from depletion to accumulation with a small hysteresis indicating the presence of oxide traps. The trap density was also computed from the Levinson’s plot. The use of Zn0.7Mg0.3O as a dielectric layer adds additional dimension to its applications. The room temperature processing of the device depicts the possibility of the use of flexible substrates such as polymer substrates. The results provide the realization of transparent electronics for next-generation optoelectronics.
Resumo:
Designing a heat sink based on a phase change material (PCM) under cyclic loading is a critical issue. For cyclic operation, it is required that the fraction of the PCM melting during the heating cycle should completely resolidify during the cooling period, so that that thermal storage unit can be operated for an unlimited number of cycles. Accordingly, studies are carried out to find the parameters influencing the behavior of a PCM under cyclic loading. A number of parameters are identified in the process, the most important ones being the duty cycle and heat transfer coefficient (h) for cooling. The required h or the required cooling period for complete resolidification for infinite cyclic operation of a conventional PCM-based heat sink is found to be very high and unrealistic with air cooling from the surface. To overcome this problem, the conventional design is modified where h and the area exposed to heat transfer can be independently controlled. With this arrangement, the enhanced area provided for cooling keeps h within realistic limits. Analytical investigation is carried out to evaluate the thermal performance of this modified PCM-based heat sink in comparison to those with conventional designs. Experiments are also performed on both the conventional and the modified PCM-based heat sinks to validate the new findings.
Resumo:
A low complexity, essentially-ML decoding technique for the Golden code and the three antenna Perfect code was introduced by Sirianunpiboon, Howard and Calderbank. Though no theoretical analysis of the decoder was given, the simulations showed that this decoding technique has almost maximum-likelihood (ML) performance. Inspired by this technique, in this paper we introduce two new low complexity decoders for Space-Time Block Codes (STBCs)-the Adaptive Conditional Zero-Forcing (ACZF) decoder and the ACZF decoder with successive interference cancellation (ACZF-SIC), which include as a special case the decoding technique of Sirianunpiboon et al. We show that both ACZF and ACZF-SIC decoders are capable of achieving full-diversity, and we give a set of sufficient conditions for an STBC to give full-diversity with these decoders. We then show that the Golden code, the three and four antenna Perfect codes, the three antenna Threaded Algebraic Space-Time code and the four antenna rate 2 code of Srinath and Rajan are all full-diversity ACZF/ACZF-SIC decodable with complexity strictly less than that of their ML decoders. Simulations show that the proposed decoding method performs identical to ML decoding for all these five codes. These STBCs along with the proposed decoding algorithm have the least decoding complexity and best error performance among all known codes for transmit antennas. We further provide a lower bound on the complexity of full-diversity ACZF/ACZF-SIC decoding. All the five codes listed above achieve this lower bound and hence are optimal in terms of minimizing the ACZF/ACZF-SIC decoding complexity. Both ACZF and ACZF-SIC decoders are amenable to sphere decoding implementation.