244 resultados para Damage sensing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is an exploratory study to illustrate the feasibility of detecting delamination type of damage in polymeric laminates with one layer of magnetostrictive particles. One such beam encircled with excitation and sensing coils is used for this study. The change in stress gradient of the magnetostrictive layer in the vicinity of delamination shows up as a change in induced voltage in the sensing coil, and therefore provides a means to sense the presence of delamination. Recognizing the constitutive behavior of the Terfenol-D material is highly nonlinear, analytical expressions for the constitutive relations are developed by using curve fitting techniques to the experimental data. Analytical expressions that relate the applied excitation field with the stress and magnetic flux densities induced in the magnetostrictive layer are developed. Numerical methods are used to find the relative change in the induced voltage in the sensing coil due to the presence of delamination. A typical example of unidirectional laminate, with embedded delaminations, is used for the simulation purposes. This exploratory study illustrates that the open-circuit voltage induced in the sensing coil changes significantly (as large of 68 millivolts) with the occurrence of delamination. This feature can be exploited for device off-line inspection techniques and/or linking monitoring procedures for practical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to demonstrate the feasibility of Active Fiber Composites (AFC) as sensors for detecting damage, a pretwisted strip made of AFC with symmetric free-edge delamination is considered in this paper. The strain developed on the top/bottom of the strip is measured to detect and assess delamination. Variational Asymptotic Method (VAM) is used in the development of a non-classical non-linear cross sectional model of the strip. The original three dimensional (3D) problem is simplified by the decomposition into two simpler problems: a two-dimensional (2D) problem, which provides in a compact form the cross-sectional properties using VAM, and a non-linear one-dimensional (1D) problem along the length of the beam. This procedure gives the non-linear stiffnesses, which are very sensitive to damage, at any given cross-section of the strip. The developed model is used to study a special case of cantilevered laminated strip with antisymmetric layup, loaded only by an axial force at the tip. The charge generated in the AFC lamina is derived in closed form in terms of the 1D strain measures. It is observed that delamination length and location have a definite influence on the charge developed in the AFC lamina. Also, sensor voltage output distribution along the length of the beam is obtained using evenly distributed electrode strip. These data could in turn be used to detect the presence of damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling and analysis of wave propagation in elastic solids undergoing damage and growth process are reported in this paper. Two types of diagnostic problems, (1) the propagation of waves in the presence of a slow growth process and (2) the propagation of waves in the presence of a fast growth process, are considered. The proposed model employs a slow and a fast time scale and a homogenization technique in the wavelength scale. A detailed analysis of wave dispersion is carried out. A spectral analysis reveals certain low-frequency bands, where the interaction between the wave and the growth process produces acoustic metamaterial-like behavior. Various practical issues in designing an efficient method of acousto-ultrasonic wave based diagnostics of the growth process are discussed. Diagnostics of isotropic damage in a ductile or quasi-brittle solid by using a micro-second pulsating signal is considered for computer simulations, which is to illustrate the practical application of the proposed modeling and analysis. The simulated results explain how an estimate of signal spreading can be effectively employed to detect the presence of a steady-state damage or the saturation of a process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The demand for tunnelling and underground space creation is rapidly growing due to the requirement of civil infrastructure projects and urbanisation. Blasting remains the most inexpensive method of underground excavations in hard rock. Unfortunately, there are no specific safety guidelines available for the blasted tunnels with regards to the threshold limits of vibrations caused by repeated blasting activity in the close proximity. This paper presents the results of a comprehensive study conducted to find out the effect of repeated blast loading on the damage experienced by jointed basaltic rock mass during tunnelling works. Conducting of multiple rounds of blasts for various civil excavations in a railway tunnel imparted repeated loading on rock mass of sidewall and roof of the tunnel. The blast induced damage was assessed by using vibration attenuation equations of charge weight scaling law and measured by borehole extensometers and borehole camera. Ground vibrations of each blasting round were also monitored by triaxial geophones installed near the borehole extensometers. The peak particle velocity (V-max) observations and plastic deformations from borehole extensometers were used to develop a site specific damage model. The study reveals that repeated dynamic loading imparted on the exposed tunnel from subsequent blasts, in the vicinity, resulted in rock mass damage at lesser vibration levels than the critical peak particle velocity (V-cr). It was found that, the repeated blast loading resulted in the near-field damage due to high frequency waves and far-field damage due to low frequency waves. The far field damage, after 45-50 occurrences of blast loading, was up to 55% of the near-field damage in basaltic rock mass. The findings of the study clearly indicate that the phenomena of repeated blasting with respect to number of cycles of loading should be taken into consideration for proper assessment of blast induced damage in underground excavations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A defect-selective photothermal imaging system for the diagnostics of optical coatings is demonstrated. The instrument has been optimized for pump and probe parameters, detector performance, and signal processing algorithm. The imager is capable of mapping purely optical or thermal defects efficiently in coatings of low damage threshold and low absorbance. Detailed mapping of minor inhomogeneities at low pump power has been achieved through the simultaneous action of a low-noise fiber optic photothermal beam defection sensor and a common-mode-rejection demodulation (CMRD) technique. The linearity and sensitivity of the sensor have been examined theoretically and experimentally, and the signal to noise ratio improvement factor is found to be about 110 compared to a conventional bicell photodiode. The scanner is so designed that mapping of static or shock sensitive samples is possible. In the case of a sample with absolute absorptance of 3.8 x 10(-4), a change in absorptance of about 0.005 x 10(-4) has been detected without ambiguity, ensuring a contrast parameter of 760. This is about 1085% improvement over the conventional approach containing a bicell photodiode, at the same pump power. The merits of the system have been demonstrated by mapping two intentionally created damage sites in a MgF2 coating on fused silica at different excitation powers. Amplitude and phase maps were recorded for thermally thin and thick cases, and the results are compared to demonstrate a case which, in conventional imaging, would lead to a deceptive conclusion regarding the type and location of the damage. Also, a residual damage profile created by long term irradiation with high pump power density has been depicted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films are developed by dispersing carbon black nanoparticles and carbon nanotubes (CNTs) in an epoxy polymer. The films show a large variation in electrical resistance when subjected to quasi-static and dynamic mechanical loading. This phenomenon is attributed to the change in the band-gap of the CNTs due to the applied strain, and also to the change in the volume fraction of the constituent phases in the percolation network. Under quasi-static loading, the films show a nonlinear response. This nonlinearity in the response of the films is primarily attributed to the pre-yield softening of the epoxy polymer. The electrical resistance of the films is found to be strongly dependent on the magnitude and frequency of the applied dynamic strain, induced by a piezoelectric substrate. Interestingly, the resistance variation is found to be a linear function of frequency and dynamic strain. Samples with a small concentration of just 0.57% of CNT show a sensitivity as high as 2.5% MPa-1 for static mechanical loading. A mathematical model based on Bruggeman's effective medium theory is developed to better understand the experimental results. Dynamic mechanical loading experiments reveal a sensitivity as high as 0.007% Hz(-1) at a constant small-amplitude vibration and up to 0.13%/mu-strain at 0-500 Hz vibration. Potential applications of such thin films include highly sensitive strain sensors, accelerometers, artificial neural networks, artificial skin and polymer electronics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymerized carbon nanotubes (CNTs) are promising materials for polymer-based electronics and electro-mechanical sensors. The advantage of having a polymer nanolayer on CNTs widens the scope for functionalizing it in various ways for polymer electronic devices. However, in this paper, we show for the first time experimentally that, due to a resistive polymer layer having carbon nanoparticle inclusions and polymerized carbon nanotubes, an interesting dynamics can be exploited. We first show analytically that the relative change in the resistance of a single isolated semiconductive nanotube is directly proportional to the axial and torsional dynamic strains, when the strains are small, whereas, in polymerized CNTs, the viscoelasticity of the polymer and its effective electrical polarization give rise to nonlinear effects as a function of frequency and bias voltage. A simplified formula is derived to account for these effects and validated in the light of experimental results. CNT–polymer-based channels have been fabricated on a PZT substrate. Strain sensing performance of such a one-dimensional channel structure is reported. For a single frequency modulated sine pulse as input, which is common in elastic and acoustic wave-based diagnostics, imaging, microwave devices, energy harvesting, etc, the performance of the fabricated channel has been found to be promising.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The issue of dynamic spectrum scene analysis in any cognitive radio network becomes extremely complex when low probability of intercept, spread spectrum systems are present in environment. The detection and estimation become more complex if frequency hopping spread spectrum is adaptive in nature. In this paper, we propose two phase approach for detection and estimation of frequency hoping signals. Polyphase filter bank has been proposed as the architecture of choice for detection phase to efficiently detect the presence of frequency hopping signal. Based on the modeling of frequency hopping signal it can be shown that parametric methods of line spectral analysis are well suited for estimation of frequency hopping signals if the issues of order estimation and time localization are resolved. An algorithm using line spectra parameter estimation and wavelet based transient detection has been proposed which resolves above issues in computationally efficient manner suitable for implementation in cognitive radio. The simulations show promising results proving that adaptive frequency hopping signals can be detected and demodulated in a non cooperative context, even at a very low signal to noise ratio in real time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fuzzy logic system (FLS) with a new sliding window defuzzifier is proposed for structural damage detection using modal curvatures. Changes in the modal curvatures due to damage are fuzzified using Gaussian fuzzy sets and mapped to damage location and size using the FLS. The first four modal vectors obtained from finite element simulations of a cantilever beam are used for identifying the location and size of damage. Parametric studies show that modal curvatures can be used to accurately locate the damage; however, quantifying the size of damage is difficult. Tests with noisy simulated data show that the method detects damage very accurately at different noise levels and when some modal data are missing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low frequency fluctuations in the electrical resistivity, or noise, have been used as a sensitive tool to probe into the temperature driven martensite transition in dc magnetron sputtered thin films of nickel titanium shape-memory alloys. Even in the equilibrium or static case, the noise magnitude was more than nine orders of magnitude larger than conventional metallic thin films and had a characteristic dependence on temperature. We observe that the noise while the temperature is being ramped is far larger as compared to the equilibrium noise indicating the sensitivity of electrical resistivity to the nucleation and propagation of domains during the shape recovery. Further, the higher order statistics suggests the existence of long range correlations during the transition. This new characterization is based on the kinetics of disorder in the system and separate from existing techniques and can be integrated to many device applications of shape memory alloys for in-situ shape recovery sensing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tensile stress–strain response and fracture in a hypereutectic Ti–6Al–4V–1.7B (weight percent) alloy were investigated by employing interrupted tensile tests combined with acoustic emission measurements, with the aim to identify the cause for the observed low ductility in this alloy. These tests were complemented with microscopy. The alloy contains TiB whiskers of different length scales, the majority of which include micro-whiskers ( 5–10 μm length) and a few primary-whiskers ( 200–300 μm length). Although the fracture of both types of whiskers occur during deformation, the former leads to a gradual decrease in the secant modulus whereas initiation of the latter leads to a drastic drop in the modulus along with failure of the specimen, limiting the ductility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compressive sensing (CS) has been proposed for signals with sparsity in a linear transform domain. We explore a signal dependent unknown linear transform, namely the impulse response matrix operating on a sparse excitation, as in the linear model of speech production, for recovering compressive sensed speech. Since the linear transform is signal dependent and unknown, unlike the standard CS formulation, a codebook of transfer functions is proposed in a matching pursuit (MP) framework for CS recovery. It is found that MP is efficient and effective to recover CS encoded speech as well as jointly estimate the linear model. Moderate number of CS measurements and low order sparsity estimate will result in MP converge to the same linear transform as direct VQ of the LP vector derived from the original signal. There is also high positive correlation between signal domain approximation and CS measurement domain approximation for a large variety of speech spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uncertainties associated with the structural model and measured vibration data may lead to unreliable damage detection. In this paper, we show that geometric and measurement uncertainty cause considerable problem in damage assessment which can be alleviated by using a fuzzy logic-based approach for damage detection. Curvature damage factor (CDF) of a tapered cantilever beam are used as damage indicators. Monte Carlo simulation (MCS) is used to study the changes in the damage indicator due to uncertainty in the geometric properties of the beam. Variation in these CDF measures due to randomness in structural parameter, further contaminated with measurement noise, are used for developing and testing a fuzzy logic system (FLS). Results show that the method correctly identifies both single and multiple damages in the structure. For example, the FLS detects damage with an average accuracy of about 95 percent in a beam having geometric uncertainty of 1 percent COV and measurement noise of 10 percent in single damage scenario. For multiple damage case, the FLS identifies damages in the beam with an average accuracy of about 94 percent in the presence of above mentioned uncertainties. The paper brings together the disparate areas of probabilistic analysis and fuzzy logic to address uncertainty in structural damage detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design and implementation of a complete gas sensor system for liquified petroleum gas (LPG) gas sensing are presented. The system consists of a SnO2 transducer, a lowcost heater, an application specific integrated circuit (ASIC) with front-end interface circuitry, and a microcontroller interface for data logging. The ASIC includes a relaxation-oscillator-based heater driver circuit that is capable of controlling the sensor operating temperature from 100degC to 425degC. The sensor readout circuit in the ASIC, which is based on the resistance to time conversion technique, has been designed to measure the gas sensor response over three orders of resistance change during its interaction with gases.