38 resultados para Behaviorismo Radical
Resumo:
Treatment of bromoketals 2, derived from allyl alcohols 1, with tributyltin chloride, sodium cyanoborohydride and AIBN furnishes the tetrahydrofurannulated products 3 via a 5-exo-trig radical cyclisation reaction followed by reductive cleavage of ketal 4.
Resumo:
Quinones and their radical ion intermediates have been much studied by vibrational spectroscopy to understand their structure-function relationships in various biological processes. In this paper, we present a comprehensive analysis of vibrational spectra in the structure-sensitive region of both the naphthoquinone (NQ) and 2-methyl-1,4-naphthoquinone (MQ, menaquinone) radical anions using time-resolved resonance Raman and ab initio studies. Specific vibrational mode assignments have been made to all the vibrational frequencies recorded in the experiment. It is observed that the carbonyl and C-C stretching frequencies show considerable coupling in NQ and MQ radical anions. Further, the asymmetric substitution present in MQ with respect to NQ shows important signatures in the radical anion spectrum. It is concluded that assignments of vibrational frequencies of asymmetrically substituted quinones must take into consideration the influence of asymmetry on structure and reactivity.
Resumo:
Diels-Alder reaction of the dienone 12, obtained by C-alkylation of sodium 2,6-dimethylphenoxide, with acrylonitrile and phenyl vinyl sulfones generate the enynes 14 and 17. Tributyltin radical addition to the terminal acetylene in 14 and 17 lead to the vinylstannanes 15 and 18 via 5-exo trig cyclisation of the resulting vinyl radical, which on oxidative cleavage furnishes the isotwistane-diones 16 and 19. Reductive desulfonylation of the diketosulfone 19 furnishes the dione 11, constituting a formal total synthesis of 2-pupukeanone 5 and 2-isocyanopupukeanone 3.
Resumo:
The application of radical-mediated cyclizations and annulations in organic synthesis has grown in importance steadily over the years to reach the present status where they are now routinely used in the strategy-level planning.2 The presence of a quaternary carbon atom is frequently encountered in terpenoid natural products, and it often creates a synthetic challenge when two or more quaternary carbon atoms are present in a contiguous manner.3 Even though creation of a quaternary carbon atom by employing a tertiary radical is very facile, creation of a quaternary carbon atom (or a spiro carbon atom) via radical addition onto a fully substituted olefinic carbon atom is not that common but of synthetic importance. For example, the primary radical derived from the bromide 1 failed to cyclize to generate the two vicinal quaternary carbon atoms and resulted in only the reduced product 2.4 The tricyclic carbon framework tricyclo[6.2.1.01,5]undecane (3) is present in a number of sesquiterpenoids e.g. zizzanes, prelacinanes, etc.5
Resumo:
Synthesis of Andirolactone (Image ), starting from 4-methyl cyclohex-3-en-1-one (Image ), via the radical cyclisation of the bromoacetal (Image ), is described.
Resumo:
Generation of H2O2 by rat liver mitochondria with choline, glycerol 1-phosphate and proline as substrates has been shown by using high-concentration phosphate buffer. Rates obtained under these conditions were higher and more consistent as compared with the earlier reports with high-concentration mannitol/sucrose/Tris buffer. Sulphate ions could replace phosphate indicating a requirement for a high concentration of oxygen-containing anions. H2O2 generation was dependent on the presence of native mitochondria and substrate. Maximal rates with various substrates were found to be the same as with succinate. Values of Km and Vmax for H2O2 generation were considerably less than those obtained for respective dehydrogenase activities, measured by dye reduction. Scavengers of O2-. and OH. inhibited generation of H2O2. ATP, ADP, thyronine derivatives and a number of phenolic compounds also showed very potent inhibitory effects of H2O2 generation, whereas phenyl compound had no effect. Phenolic compounds did not have any effect on mitochondrial superoxide dismutase and choline dehydrogenase activities as well as on O2-. generation by the xanthine-xanthine oxidase system. Inhibition by phenolic compounds may have potential for regulation of the intracellular concentration of H2O2, that is not considered to have a "second messenger' function.
Resumo:
Reaction of the bromoketals 3, 7a-g and 11 with tri-n-butyltin chloride and sodium cyanoborohydride in the presence of a catalytic amount of AIBN furnished the ethers 5, 8a-g and 13 via a tandem sequence comprising of a radical cyclisation reaction and tri-n-butylhalostannane and sodium cyanoborohydride mediated reductive demethoxylation of the resulting cyclic ketals.
Resumo:
Formation of oxygen radicals during reduction of H2O2 or diperoxovanadate with vanadyl sulfate or ferrous sulfate was indicated by the 1:2:2:1 electron spin resonance (ESR) signals of the DMPO adduct typical of standard radical dotOH radical. Signals derived from diperoxovanadate remained unchanged in the presence of ethanol in contrast to those from H2O2. This gave the clue that they represent a different radical, possibly radical dotOV(O2)2+, formed on breaking a peroxo-bridge of diperoxovanadate complex. The above reaction mixtures evolved dioxygen or, when NADH was present, oxidized it rapidly which was accompanied by consumption of dioxygen. Operation of a cycle of peroxovanadates including this new radical is suggested to explain these redox activities both with vanadyl and ferrous sulfates. It can be triggered by ferrous ions released from cellular stores in the presence of catalytic amounts of peroxovanadates.
Resumo:
A few simple three-atom thermoneutral radical exchange reactions (i.e. A + BC --> AB + C) are examined by ab initio SCF methods. Emphasis is laid on the detailed analysis of density matrices rather than on energetics. Results reveal that the sum of the bond orders of the breaking and forming bonds is not conserved to unity, due to development of free valence on the migrating atom 'B' in the transition state. Bond orders, free valence and spin densities on the atoms are calculated. The present analysis shows that the bond-cleavage process is always more advanced than the bond-formation process in the transition state. Further analysis shows a development of the negative spin density on the migrating atom 'B' in the transition state. The depletion of the alpha-spin density on the radical site "A" in the reactant during the reaction lags behind the growth of the alpha-spin density on the terminal atom "C" of the reactant bond, 'B-C' in the transition state. But all these processes are completed simultaneously at the end of the reaction. Hence, the reactions are asynchronous but kinetically concerted in most cases.