77 resultados para Anaerobic metabolism
Resumo:
Ultraviolet (UV) radiation is one of the major risk factors of cataract (loss of eye-lens transparency). The influence of UVB radiation (300 nm, 100 mu W cm(-2)) on the activity and apparent kinetic constants (K-m and V-max) of rat lens hexokinase (HK;EC2.7.1.1), phosphofructokinase (PFK;EC2.7.1.11), isocitrate dehydrogenase (ICDH;EC1.1.1.41) and malate dehydrogenase (MDH;EC1.1.1.37) of energy metabolism has been investigated by irradiating the lens homogenate of three-and 12-month-old rats. In the three-month-old group specific activities of HK and PFK are reduced by 56 and 43 %, respectively, and there is no change in ICDH and MDH activities after a 24 h exposure. On the other hand, in the 12-month-old group the decreases are 72, 71, 24 and 16 % for HK, PFK. ICDH and MDH, respectively. UVB irradiation increases the apparent K-m of HK and PFK (in both age groups), whereas the K-m of ICDH and MDH is not altered. While the decrease in V-max of these enzymes due to UVB exposure is only marginal in three-month-old rats, it is more pronounced (significant) in 12-month-old rats. A similar decrease in enzyme activities of HK and PFK is also observe upon UVB exposure of the intact rat lens. The photoinduced changes in energy metabolism may in turn have a bearing on lens transparency, particularly at an older age.
Resumo:
The fermentation characteristics of six specific types of the organic fraction of municipal solid waste (OFMSW) were examined, with an emphasis on properties that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns of a vegetable (cabbage), fruits (banana and citrus peels), fresh leaf litter of bamboo and teak leaves, and paper (newsprint) waste streams as feedstocks were studied. Individual OFMSW components were placed into nylon mesh bags and subjected to various fermentation periods (solids retention time, SRT) within the inlet of a functioning plug-flow biogas fermentor. These were removed at periodic intervals, and their composition was analyzed to monitor decomposition rates and changes in chemical composition. Components like cabbage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor (PFBR) as well as under a biological methane potential (BMP) assay, while other OFMSW components (leaf litter from bamboo and teak leaves and newsprint) fermented slowly with poor process stability and moderate biodegradation. For fruit and vegetable wastes (FVW), a rapid and efficient removal of pectins is the main cause of rapid disintegration of these feedstocks, which left behind very little compost forming residues (2–5%). Teak and bamboo leaves and newsprint decomposed only to 25–50% in 30 d. These results confirm the potential for volatile fatty acids accumulation in a PFBR’s inlet and suggest a modification of the inlet zone or operation of a PFBR with the above feedstocks.
Resumo:
5-Fluorouracil (5-FU) is one of the most widely used drugs for treatment of cancers, including breast cancer that exhibits its anticancer activity by inhibiting DNA synthesis and also incorporated into DNA and RNA. The objective of this investigation was to find out the total nucleotide metabolism genes regulated by 5-FU in breast cancer cell line. The breast cancer cell line MCF-7 was treated with the drug 5-FU. To analyze the expression of genes, we have conducted the experiment using 1.7k and 19k human microarray slide and confirmed the expression of genes by semiquantitative reverse transcription-polymerase chain reaction. The expression of 44 genes involved in the nucleotide metabolism pathway was quantified. Of these 44 genes analyzed, transcription of 6 genes were upregulated and 9 genes were downregulated. Earlier studies revealed that the transcription of genes for key enzymes like thymidylate synthase, thymidinekinase, and dihydropyrimidine dehydrogenase are regulated by 5-FU. This study identified some novel genes like thioredoxin reductase, ectonucleotide triphosphate dephosphorylase, and CTP synthase are regulated by 5-FU. The data also reveal large-scale perturbation in transcription of genes not involved directly in the known mechanism of action of 5-FU.
Resumo:
The monoterpene cyclic ether, cineole (l,8-cineole, I) also known as eucalyptol, is a component of many essential oils and is widely distributed in nature. It is extensively used in pharmaceutical preparations for external application and also as a nasal spray. It was reported earlier that cineole when administered to sheep may be largely oxidized in the system (Scheline 1978). However the mode of metabolism of cineole is not known. Hence the present study was undertaken to investigate the metabolic fate of this ubiquitous terpenoid following its administration to rats by gastric intubation.
Resumo:
A transamidinase was purified 463-fold from Lathyrus sativus seedlings by affinity chromatography on homoarginine--Sepharose. The enzyme exhibited a wide substrate specificity, and catalysed the reversible transfer of the amidino groups from donors such as arginine, homoarginine and canavanine to acceptors such as lysine, putrescine, agmatine, cadaverine and hydroxylamine. The enzyme could not be detected in the seeds, and attained the highest specific activity in the embryo axis on day 10 after seed germination. Its thiol nature was established by strong inhibition by several thiol blockers and thiol compounds in the presence of ferricyanide. In the absence of an exogenous acceptor, it exhibited weak hydrolytic activity towards arginine. It had apparent mol.wt. 210000, and exhibited Michaelis--Menten kinetics with Km 3.0 mM for arginine. Ornithine competitively inhibited the enzyme, with Ki 1.0 mM in the arginine--hydroxylamine amidino-transfer reaction. Conversion experiments with labelled compounds suggest that the enzyme is involved in homoarginine catabolism during the development of plant embryo to give rise to important amino acids and amine metabolites. Presumptive evidence is also provided for its involvement in the biosynthesis of the guanidino amino acid during seed development. The natural occurrence of arcain in L. sativus and mediation of its synthesis in vitro from agmatine by the transamidinase are demonstrated.
Resumo:
As indicated in the Introduction, the many significant developments in the recent past in our knowledge of the lipids of the nervous system have been collated in this article. That there is a sustained interest in this field is evident from the rather long bibliography which is itself selective. Obviously, it is not possible to summarize a review in which the chemistry, distribution and metabolism of a great variety of lipids have been discussed. However, from the progress of research, some general conclusions may be drawn. The period of discovery of new lipids in the nervous system appears to be over. All the major lipid components have been discovered and a great deal is now known about their structure and metabolism. Analytical data on the lipid composition of the CNS are available for a number of species and such data on the major areas of the brain are also at hand but information on the various subregions is meagre. Such investigations may yet provide clues to the role of lipids in brain function. Compared to CNS, information on PNS is less adequate. Further research on PNS would be worthwhile as it is amenable for experimental manipulation and complex mechanisms such as myelination can be investigated in this tissue. There are reports correlating lipid constituents with the increased complexity in the organization of the nervous system during evolution. This line of investigation may prove useful. The basic aim of research on the lipids of the nervous tissue is to unravel their functional significance.
Resumo:
Details of the metabolism of alpha-terpineol by Pseudomonas incognita are presented. Degradation of alpha-terpineol by this organism resulted in the formation of a number of acidic and neutral metabolites. Among the acidic metabolites, beta-isopropyl pimelic acid, 1-hydroxy-4-isopropenyl-cyclohexane-1-carboxylic acid, 8-hydroxycumic acid, oleuropeic acid, cumic acid, and p-isopropenyl benzoic acid have been identified. Neutral metabolites identified were limonene, p-cymene-8-ol, 2-hydroxycineole, and uroterpenol. Cell-free extracts prepared from alpha-terpineol adapted cells were shown to convert alpha-terpineol, p-cymene-8-ol, and limonene to oleuropeic acid, 8-hydroxycumic acid, and perillic acid, respectively, in the presence of NADH. The same cell-free extract contained NAD+ -specific dehydrogenase(s) which converted oleuropyl alcohol, p-cymene-7,8-diol, and perillyl alcohol to their corresponding 7-carboxy acids. On the basis of various metabolites isolated from the culture medium, together with the supporting evidence obtained from enzymatic and growth studies, it appears that P. incognita degrades alpha-terpineol by at least three different routes. While one of the pathways seems to operate via oleuropeic acid, a second may be initiated through the aromatization of alpha-terpineol. The third pathway may involve the formation of limonene from alpha-terpineol and its further metabolism.
Resumo:
Free proline content in Ragi (Eleusine coracana) leaves increased markedly (6 to 85 fold) as the degree of water stress, created by polyethylene gylcol treatment, was prolonged There was also a marginal increase in soluble proteins in the stressed leaves as compared to that in the controls. Water stress stimulated the activities of ornithine aminotransferase and pyrroline-5-carboxylate reductase, the enzymes of proline biosynthesis and markedly inhibited the enzymes involved in proline degradation viz., proline oxidase and pyrroline-5-carboxylate dehydrogenase. These results suggest that increase in free proline content of Ragi leaves could be due to enhanced activities of the enzymes synthesizing proline but more importantly due to severe inhibition of the enzymes degrading proline. These observations establish for the first time, the pathway of proline metabolism in plants by way of detection of the activities of all the enzymes involved and also highlight the role of these enzymes in proline accumulation during water stress.
Resumo:
1. Metabolites isolated from the urine of rats after oral administration of geraniol (I) were: geranic acid (II), 3-hydroxy-citronellic acid (III), 8-hydroxy-geraniol (IV), 8-carboxy-geraniol (V) and Hildebrandt acid (VI). 2. Metabolites isolated from urine of rats after oral administration of linalool (VII) were 8-hydroxy-linalool (VIII) and 8-carboxy-linalool (IX). 3. After three days of feeding rats with either geraniol or linalool, liver-microsomal cytochrome P-450 was increased. Both NADH- and NADPH-cytochrome c reductase activities were not significantly changed during the six days of treatment. 4. Oral administration of these two terpenoids did not affect any of the lung-microsomal parameters measured.
Resumo:
The ability of Pseudomonas incognita to metabolize some structurally modified acyclic monoterpenes was tested. The 6,7 double bond was found essential for these compounds to serve as a substrate for this organism, whereas the same was not true with the 1,2 double bond. Metabolism of dihydrolinalyl acetate by this strain yielded dihydrolinalool, dihydrolinalool-8-carboxylic acid, dihydrolinalyl acetate-8-carboxylic acid, and 4-acetoxy-4-methyl hexanoic acid. A cell-free extract prepared from dihydrolinalyl acetate grown cells transformed dihydrolinalyl acetate into dihydrolinalool and dihydrolinalool-8-carboxylic acid. Based on the identification of various metabolites isolated from the culture medium, and on growth and manometric studies carried out with the isolated metabolites as well as with related synthetic analogs, probable pathways for the biodegradation of dihydrolinalyl acetate are presented.
Resumo:
Abstract is not available.
Resumo:
Some of the enzyme systems in the formation of p-hydroxybenzoate from tyrosine have been studied in the rat liver in vitro. The conversion of p-hydroxycinnamate into p-hydroxybenzoate, which was found in rat liver mitochondria showed a number of differences when compared with the b-oxidation of fatty acids. Studies with p-hydroxy[U-14C]cinnamate indicated that 14CO2 was released during the formation of p-hydroxybenzoate. The formation of p-hydroxycinnamate from tyrosine of p-hydroxyphenyl-lactate could not be demonstrated in vitro. The interconversion of p-hydroxycinnamate and p-hydroxyphenylpropionate was demonstrated in rat liver mitochondria.
Resumo:
The nucleotide coenzyme cytidine-5-diphospho-choline is highly folded. The CMP-5 parts of the molecules in the crystal structure are strongly linked by metal ligation and hydrogen bonds leaving the phosphoryl-choline residues relatively free. Cytidine-5-diphosphoric acid exists as a zwitterion with N31 protonated. The P−O bond lengths from the anhydride bridging oxygen in the pyrophosphate are significantly different.
Resumo:
A new analogue of vitamin A, viz., retinoic acid anhydride was prepared, for the first time, by the action of thionyl chloride on retinoic acid in benzene containing pyridine. The amhydride was charcterised by its chromatographic properties, elemental analysis, ultraviolet absorption, infrared and nuclear magnetic resonance spectral characteristics. The compound could be readily hydrolysed to retinoic acid both by acid and alkali treatments and reduced by lithium aluminium hydride to vitamin A alcohol (retinol). The spectral changes with antimony trichloride reagent were similar to those observed for retinoic acid. The metabolism of retinoic acid anhydride was found to be similar to that of retinoic acic. When administered either orally or intraperitoneally, the compound promotes growth in vitamin A-deficient rats. Time-course experiments revealed that retinoic acid anhydride is converted into retinoic acid by non-enzymatic hydrolysis and thereby exerts its biological activity. The biopotency of the anhydride was found to be nearly the same as that of the acid. A new method of preparing esters of retinoic acid employing retinoic acid anhydride as an intermediate, has been described.
Resumo:
A fungus capable of degrading DL-phenylalanine was isolated from the soil and identified as Aspergillus niger. It was found to metabolize DL-phenylalanine by a new pathway involving 4-hydroxymandelic acid. D-Amino acid oxidase and L-phenylalanine: 2-oxoglutaric acid aminotransferase initiated the degradation of D- and L-phenylalanine, respectively. Both phenylpyruvate oxidase and phenylpyruvate decarboxylase activities could be demonstrated in the cell-free system. Phenylacetate hydroxylase, which required reduced nicotinamide adenine dinucleotide phosphate, converted phenylacetic acid to 2- and 4-hydroxyphenylacetic acid. Although 4-hydroxyphenylacetate was converted to 4-hydroxymandelate, 2-hydroxyphenylacetate was not utilized until the onset of sporulation. During sporulation, it was converted rapidly into homogentisate and oxidized to ring-cleaved products. 4-Hydroxymandelate was degraded to protocatechuate via